SYSTEMS
ENGINEERING

RESERRCH CENTER

Model-based Engineering for Functional Risk Assessment
and Design of Cyber Resilient Systems

Technical Report SERC-2019-TR-002
February 22, 2019

Report No. SERC-2019-TR-002 Date February 22, 2019

Copyright © 2018 Stevens Institute of Technology, Systems Engineering Research Center

The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research
Center managed by Stevens Institute of Technology.

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense
through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under
Contract HQ0034-13-D-0004, TO#0094.

Any views, opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States Department of Defense nor
ASD(R&E).

No Warranty.

This Stevens Institute of Technology and Systems Engineering Research Center Material is furnished on
an “as-is” basis. Stevens Institute of Technology makes no warranties of any kind, either expressed or
implied, as to any matter including, but not limited to, warranty of fitness for purpose or
merchantability, exclusivity, or results obtained from use of the material. Stevens Institute of
Technology does not make any warranty of any kind with respect to freedom from patent, trademark, or
copyright infringement.

This material has been approved for public release and unlimited distribution.

Report No. SERC-2019-TR-002 Date February 22, 2019

TABLE OF CONTENTS

Executive Summary iv
1 Introduction 1
1.1 ContextofProject ¢ i i i i i i i i e e e e e e e e e e e e 1
1.2 Tasks . & v v v i e 2
1.2.1 Architectural Selection MethodologyandTools 2
1.2.2 Support War Room Activities 2
1.2.3 Security AnalystDashboard 2
1.2.4 Sentinel Vulnerability Assessment Methodology & Algorithms 3
2 Background 3
2.1 Cyber Security Requirements Methodology (CSRM) 3

3 Selecting System Specific Cybersecurity Attack Patterns Using Natural Language Process-

ing q
3.1 Background L e 4
3.2 TopicModeling @ i i i i i e e e e e e e e e e e 5
3.3 Methodology i i i i i i i i i i i e e e e e e e e e e e e e e e e 6
3.4 Applicationof Approach i e e e e e e e e e e e e 7
341 FutureWork o i i i i i i i e e e e e e e e e e e e e e e 12
Tools Effort 13
4.1 Systems-Theoretic Resiliency Assessment Tool (STRAT) 13
4.1.1 Development of Mission and System Specifications 14
4.1.2 Systems-Theoretic Consequence Analysis 15
4.1.3 Model-based Solution Identification 18
4.1.4 Evaluating ResiliencySolutions 22
4.2 CYBOK and Security AnalystDashboard 23
4.2.1 Role within the MissionAware Framework 23
4.2.2 CYBOK i i i ittt e e et e e e e e e e e e e e e e e e e e 25
4.2.3 Security AnalystsDashboard 33
424 Implementation e e e e e e e e e e e e e e e 38
425 SUMMArY . . . v i v i it e et et e e e e e e e e e e e e 38
Application to Silverfish 39
5.1 DescriptionofSystem L e e e e e 39
5.2 Application of STRAT i i i i i e e e e e e e e e e 41
5.2.1 Mission and System Specification 41
5.2.2 Systems-Theoretic Consequence Analysis 44
5.2.3 Model-based Resilience Solution Identification 46
5.2.4 Evaluation of Identified Resiliency Solutions 51
5.2.5 ComparisontoCSRMResults 55
5.3 Application of CYBOK & Security Analyst Dashboard 56

Report No. SERC-2019-TR-002 Date February 22, 2019

5.3.1 AttackSurface it e e e e e e e e e e e e e e e e e e e 57

5.3.2 Relevant Attack Vectors v v i v i v i e e e e e e e e e e e 58
6 Conclusions and Potential Future Research Directions 60
References 60

LIST OF FIGURES

1 Evaluation metrics for variational estimation. 9
2 Evaluation metrics for Gibbs sampling. 9
3 Top l0words pertopic. o e e e e e 10
4 Posterior topic distribution for example system. 10
5 The generic control loop structure that is used to formulate the control model.
(adapted from [1]). e 16
6 A “stacked” control structure of a fictional missile defense system (From [2]). . . 17
7 The risk matrix prioritization framework for resiliency solutions. 23
8 Where Security Analyst Dashboard and CYBOK Fits into MissionAware 24
9 Illustration of the perspective each dataset has on the problem of cybersecurity. 27
10 Architecture of CYBOK. e 29

11 Diagram of TaxaScore scoring breakdown for a match with score t. (a) Shows the
score an ancestor receives from the match, (b) shoes the score a matched instance
receives, and (c) shows what score each of the children will receive. 30
12 Process diagram of CYBOK. Green dotted path denotes basic search process (-search
flag). Orange dashed path indicates the additional attack surface analysis that oc-
curs when doing a search of a model (-input flag). Red path indicates the exploit
chain analysis that occurs when the —target flag is included in a model search. . 32
13 Ascreenshot of the Securing Analyst Dashboard, showing a system topology with
projected attack surfaces and exploit chains, the Attack Vector graph view, and the
bucket. Each feature of which will be mentioned later.. 34
14 A screenshot of a system topology with projected attack surfaces displayed. The
model was created in SysML and exported to GraphML using graphml_export, a

plugin for MagicDraw. e e e e 35
15 Screenshot of the model editor for a specific component. Showing the component

name and the associated attributes that describeit. 36
16 Screenshot of the system specificationsview. 36
17 Screenshot of the two attack vector visualization methods, the left showing the

graph view, and the right showing the treeview. 37
18 Screenshotofthebucket. o 38
19 A Concept of Operations representation of SilverfishinSysML. 41
20 The basic control structure of Silverfish. 45
21 The Sim-graph for the Silverfish System. 47
22 Ascreenshot of the Simulink behaviormodel. 48
23 Resilience solutions mapped to their position in the risk matrix. 55

Report No. SERC-2019-TR-002 Date February 22, 2019

24 The attack surface of silverfish. 57
25 The projected attacks over the system topology, the set of attack vectors picked

by the security analyst in graph form, and the bucket containing the same attack

vectorsintextualform. 59

LIST OF TABLES

1 Top 5 Attacks. This table contains the CAPEC ID, the distance between the attack

topic distribution and the system topic distribution, the title of the attack, and the

summary of the attack as listed in CAPEC. 11
2 Bottom 5 Attacks. This table contains the CAPEC ID, the distance between the at-

tack topic distribution and the system topic distribution, the title of the attack, and

the summary of the attack as listed in CAPEC. 12
3 CSRM process and associated tool support from STRAT. Overlap represents the

steps of CSRM that the respective component of STRAT supports. 13
4 A mapping of Sim-graph elements to a Simulink model element that should suffi-

ciently represent its behavior in most applications. 21
5 Key features of each of the attack vectordatasets. 26
6 The list of Blue Team-derived undesirable consequences. 43
7 Hazardous Conditions that could lead to an unacceptableloss. 45
8 Control actions and the conditions under which they would contribute to a hazard. 46
9 Causal scenarios for implementing an improper control action mapped to unde-

sirable Blue Team outcomes. e 46
10 Atruth table representation of operator decision logic. 49
11 Atruth table description of the outcome matrix. 49
12 A mapping of simulation changes to the hazardous conditions they contribute to. 50
13 Potential Resilience Solutions mapped to simulation changes. 51
14 Resilience solutions mapped to their locations for implementation and mitigated

hazardous conditions. L e 52
15 Impact ratings for identified resiliency solutions. 53
16 Likelihood ratings for identified resiliency solutions. 54
17 Resilience solutions classified in their prioritization categories. 55
18 A fragment of the results produced by CYBOK and picked by the security analyst

through the Security Analyst Dashboard. 58

Report No. SERC-2019-TR-002

Date February 22, 2019

EXECUTIVE SUMMARY

This report describes a 12-month research activity with the principal objective of continuing de-
velopment, testing and evaluation of a methodology and supporting suite of model-based engi-
neering tools for functional risk assessment and design of cyber resilient systems. Research tasks
were structured to extend the methods and support tools for the decision problem of selecting de-
fense and resilience methods in the design and modification of cyber-physical systems. Research
reported here continues the efforts of previous SERC projects, notably RT-156 and RT-172, and
leverages and contributes to contemporaneous work in RT-191. The project was carried out as
part of an ongoing research partnership between the University of Virginia (UVA) and Virginia
Commonwealth University (VCU). The UVA team led development of methods and tools to model
the consequences of cyber attacks on cyber-physical systems, and the VCU team led development
of tools that relate consequences to likely attacks.

Outcomes this year include developing a deeper understanding of open source databases of his-
torical cyber attacks (e.g., CAPEC, CWE, CERT, and CVE), as well as defining and developing SysML
modeling constructs and a traceability ontology to effectively capture relations between missions
and system, components in the presence of attack patterns. Key accomplishments for this phase
include: (1) development of the STRAT toolset to support CSRM and dynamic assessment of attack
consequence, (2) use of several different NLP/querying techniques to characterize relationships
between attack classes in CAPEC, CWE, and CVE; (3) development of the Security Analyst Dash-
board. The dashboard presents an interactive view of both the “System” and the “Attack Space”
and allows for several different levels of automation as well as human/analyst interaction. Each
of the tools is published as a binary and/or executable. The Dashboard is designed to work within
CYBOK (though CYBOK may be used independently of the dashboard); for example, the dashboard
uses the automated recommender system that underpins CYBOK to provide analysts with the ca-
pability to directly query specific entries in CAPEC, CVE, and CWE.

Report No. SERC-2019-TR-002 Date February 22, 2019

1 INTRODUCTION

This report describes a 12-month research activity with the principal objective of continuing de-
velopment, testing and evaluation of a methodology and supporting suite of model-based engi-
neering tools for functional risk assessment and design of cyber resilient systems. Research tasks
were structured to extend the methods and support tools for the decision problem of selecting de-
fense and resilience methods in the design and modification of cyber-physical systems. Research
reported here continues the efforts of previous SERC projects, notably RT-156 and RT-172, and
leverages and contributes to contemporaneous work in RT-191. The project was carried out as
part of an ongoing research partnership between the University of Virginia (UVA) and Virginia
Commonwealth University (VCU). The UVA team led development of methods and tools to model
the consequences of cyber attacks on cyber-physical systems, and the VCU team led development
of tools that relate consequences to likely attacks.

1.1 CONTEXT OF PROJECT

The University of Virginia (UVA) has been leading a research effort in System Aware Cybersecurity
that includes techniques for attacking cyber-physical systems, sentinel based concepts for cyber
resiliency, and tools for the selection of resilient architectures. The previous effort in this series
of research, RT-172, focused on the development and selection of resilience features that sus-
tain operator control of weapon systems and assure the validity of the most critical data elements
required for weapon control. The decision support tool research under RT-172 focused on integrat-
ing historical threat considerations as well as risk considerations into the planning for defenses.
Specifically, research investigated the threat analysis aspects of the integrated risk/threat deci-
sion support process and included the development of new threat analysis methods focused on
mission-aware security. The principal goal was to create and update decision support tools to help
decision-makers understand the relative value of alternative defense measures.

RT-172 made significant progress on developing decision support tools for architectural design of
cyber-attack resilience. The analysis and modeling methodology takes a mission-centric viewpoint,
combining inputs from system experts at the design and user levels utilizing Systems-Theoretic Ac-
cident Model and Process (STAMP) to identify potentially hazardous states that a system can enter
and reason about how transitioning into those states can be prevented. The SysML Parser is a tool
that connects general system descriptions with a graph model of the system that can be “virtually
attacked” by a cyber analyst using the Security Analyst Dashboard tools. The V1 Parser is a Magic-
Draw plugin that utilizes the OpenAPI to automatically extract Internal Block Diagram (IBD), Block
Definition Diagrams (BDD), and Requirements structures to GraphML. The tool includes a model-
ing methodology that ensures the SysML blocks have a sufficient set of attributes for performing
exploit chain queries.

RT-172 developed both the methodology and associated toolset with the explicit intention of gen-
erality and broad applicability. The project included development of a first prototype of a hard-
ware/software emulation weapon system created for testing the decision-support tools. RT-191
focused on enriching and extending this test environment emulating an intelligent munition sys-
tem. The emulation included features inspired by actual weapon systems as well as expanded set

Report No. SERC-2019-TR-002 Date February 22, 2019

of situational awareness subsystems that allowed for exploration of more complex operational
scenarios and attack spaces, including system-of-systems operations and attacks. In RT-191, the
toolsets and methodology from RT-156, which include a hierarchical modeling approach through
a War Room exercise, were used to derive mission-level requirements. This work included re-
constructing the hierarchical model of the intelligent munitions systems including: requirements,
behavior (activity diagrams), and structure, all the while keeping traceability between the lower
levels of the hierarchy and the mission requirements.

1.2 TAsks

The principal objectives of RT-196 were to (1) complete development, testing and evaluation of a
next-generation methodology and supporting suite of tools for assessing the vulnerability of cyber-
physical systems and (2) to continue the ongoing activities to extend the methods and capabilities
for vulnerability assessment to provide support for the decision problem of selecting defense and
resilience methods in system design and modification, as well as support for operational decisions
associated with resilience and defense. The primary tasks are as follows.

1.2.1 ARCHITECTURAL SELECTION METHODOLOGY AND TOOLS

The objective in this task was to complete the development of the architectural selection method-
ology and tools begun in RT-172, referred to as V1, and develop a new generation, V2. RT-191 was
initiated to evaluate the initial version of a usable tool set (V0), with evaluation results completed
July 2018. RT-172 advanced VO to a more advanced support capability (V1) that was finalized as
part of RT-196. The RT-196 also included adding additional tool capabilities to address more com-
plex system configurations with enhancements to allow users to significantly increase their pro-
ductivity.

1.2.2 SUPPORT WAR ROOM ACTIVITIES

This task centered on providing support for RT-191 war rooming activities by participating in sce-
nario development, War Room Blue and Red live sessions, and consequent development of sys-
tems models. Results suggest that our “War Room” approach yields SysML representations that
both (a) capture mission objectives and system behavior while (b) providing a representative sur-
rogate surface for attack tree application.

1.2.3 SECURITY ANALYST DASHBOARD

The objective of this task was to develop new concepts and prototype for a Security Analyst Dash-
board to support decisions about where to add sentinels and other resilience and defense mecha-
nisms. The V2 architectural selection methodology and tools provide an efficient way to evaluate
the threats and vulnerabilities of a given system. However, they do not provide explicit support for
the decision of how to modify the defense and resilience architecture to improve overall system

Report No. SERC-2019-TR-002 Date February 22, 2019

resiliency. To address this decision problem, research focused on: development of scoring algo-
rithms that attempt to provide the analyst with an understanding of the interactions between
consequence (from system requirements modeling) and likelihood (from analysis of historical at-
tacks).

1.2.4 SENTINEL VULNERABILITY ASSESSMENT METHODOLOGY & ALGORITHMS

The objective in this task was to develop new concepts for self-securing systems by dynamically
adjusting Sentinel vulnerability assessment algorithms, based on related sentinel alarms that oc-
cur or other operational and functional data. This work leverages the machinery from the Security
Analyst Dashboard also topic modeling and other natural language processing algorithms.

2 BACKGROUND

2.1 CYBER SECURITY REQUIREMENTS METHODOLOGY (CSRM)

This project builds upon some of the techniques and methods RT-191, which was led by UVA
with the participation of the Software Engineering Institute (SEl) and the US Army’s Armament
Research Development and Engineering Center (ARDEC). A principal outcome of RT-191 was the
specification of the Cyber Security Requirements Methodology (CSRM) and testing on an emu-
lated concept-stage weapons system. CSRM is a methodology to develop cyber security require-
ments during the preliminary design phase for physical systems [3]. The methodology addresses
the integration of both defense and resilience solutions and security-related software engineering
solutions. CSRM consists of six steps:

1. High-level development of functional and architectural system descriptions by a systems
engineering (SE) team using tools such as SysML

2. Blue team consequence elicitation and analysis, whose deliverable is a prioritized list of
undesirable functional outcomes

3. SE team derivation of potential resilience solutions based on the results of step 2
4. Red team prioritization of defense, resilience, and software engineering solutions
5. SE team refactoring of system descriptions based on Red team recommendations
6. Blue team response to the refactored system descriptions.

In RT-191, a hypothetical, concept-stage weapon system, known as Silverfish, was used to demon-
strate the CSRM process. Silverfish consisted of a rapidly deployable set of approximately 50 ground-
based munition systems, termed obstacles. These obstacles deny a geographic area from unautho-
rized trespassers through the use of force, if necessary, to support the protection of a strategically
sensitive location. An operator remotely monitors this denied area using a variety of sensors and
visual surveillance. The operator controls the arming, disarming, and firing of the obstacles re-
motely via a wireless communication network. The final recommendations of the CSRM exercise

Report No. SERC-2019-TR-002 Date February 22, 2019

regarding resiliency, in order of priority, involved adding diverse communication systems, adding
resilient design patterns to the situational awareness components of the system, and adding re-
silient design patterns to the system’s weapon control components. These results are used for
comparison with the recommendations of the tools described in Section 4.1.

3 SELECTING SYSTEM SPECIFIC CYBERSECURITY ATTACK PATTERNS USING NATURAL LAN-
GUAGE PROCESSING

In a previous research project, the research team investigates the use of topic modeling [4] on
the Common Attack Pattern Enumeration and Classification (CAPEC) database of historical cyber-
security attacks® [5]. The results of that research were preliminary and demonstrated that topic
modeling could be used to extract information from the CAPEC database. In RT-196, we demon-
strated how a natural language processing (NLP) technique called topic modeling could be used
to match entries in CAPEC with a system. This is achieved by estimating a topic distribution of the
text in the model of the system and then finding the attack pattern with a similar topic distribu-
tion. Distance between the attack topic distribution and the model topic distribution is measured
using the Kullback-Leibler divergence [6]. The work in this section was presented at 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) and
published in the proceedings [7].

3.1 BACKGROUND

The CAPEC database is composed of 512 patterns that represent common attacks on software
and computer systems. Each attack pattern has a text description with common fields including
a summary of the attack, attack prerequisites, and links to related attack patterns. CAPEC was
created to provide a publicly accessible repository for historical information on attacks that would
give cybersecurity researchers and professionals the capability to learn from experience.

The development of systems to automatically retrieving attack patterns from CAPEC has been the
focus of other research projects. Yuan et al. [8] develop a software tool for retrieving attack pat-
terns. This method maps CAPEC attack patterns to Microsoft STRIDE categories but relies on user
input such as knowledge of the attacker’s skill level. Kotenko and Doynikova [9] propose a tech-
nique for generating random attack sequences utilizing the CAPEC database but requires knowl-
edge about the attacker. The proposed method outlined in this section is a more general concept
that relies solely on the text provided for each attack pattern in the CAPEC database. However,
the work outlined previously on retrieving attack patterns from CAPEC and generating sequences
of random attacks could be used in conjunction with proposed NLP method for matching attack
patterns to a system description.

Topic modeling has been utilized in several domains and for several applications. It is most predom-
inantly used for document clustering and classification [4], but it has also been used for document

Thttps://capec.mitre.org/index.html

Report No. SERC-2019-TR-002 Date February 22, 2019

retrieval [10], software traceability [11], sentiment analysis [12], and sentence ordering [13]. Topic
modeling has also been applied to cybersecurity problems. Aswani et al. [14] use a topic model to
extract information about SSH logs with the goal of classifying legitimate users from brute-force
attackers. Kolini and Janczewski [15] used topic modeling to identify clusters and topics of national
cybersecurity strategies. Temporal trends in CVE were analyzed using topic modeling by Neuhaus
and Zimmermann [16].

3.2 Topric MODELING

The following description of topic modeling was previously included in RT-172 report [17] but is
reproduced here for convenience.

Topic modeling is a machine learning technique commonly used in NLP that estimates latent or
hidden topics from a corpus of documents. One method for describing a document commonly
used in NLP is to count the number of times each word appears in the text and store these counts
in a vector. This method is often called “bag-of-words”. We will represent the length of this bag-of-
words vector using L. For corpora with a large number of documents and documents containing
a large amount of text, this vector can quickly grow which leads to numerous problems when at-
tempting to perform analytics, such as classificaiton or topic modeling. A topic model represents
each document in the corpus as a topic distribution with 7" topics. The number of topic distribu-
tions is generally chosen so that 7' << L so that the topic distributions can be used in place of
the bag-of-word vectors when performing analysis.

There are several types of topic models including hierarchical topic models [18], correlated topic
models [19], and supervised topic models [20], but we limit our description of the method to
the basic latent Dirichlet allocation (LDA) [4]. LDA assumes that each document in a corpus is
represented by a mixture of random topics and that each topic is represented by a distribution
over words. The presence of a word in a document is used instead of the word count. Let v be
a vector of binary variables where v; = 1 indicates that the i** word appears in the document,
and v; = 0 indicates that the i word does not appear in the document. A particular document
is composed of a sequence of words with length N and is denoted by w = (wy,...,wy). The
corpus is composed of M documents and represented by D = {wy, ..., Wy, }.

The following generative process is assumed for each document in the corpus when using the
basic LDA formulation:

1. Randomly sample N from a Poisson distribution with rate parameter &
2. Randomly sample 8 from a Dirichlet distribution with parameter «
3. For each word in N:
(a) Randomly sample a topic z,, from a multinomial distribution with parameter 6

(b) Randomly sample a word from a multinomial distribution dependent upon the topic
P(wy| 2y, B)

It is assumed that the number of topics 1" is known and fixed in this process for generating each
document,. The joint probability distribution of the topic mixture 6, the set of topics z, and the set

Report No. SERC-2019-TR-002 Date February 22, 2019

of words w given the parameters o and [is given by:

N

P(6,z,wla,) = P(6]a) [[P(20l0) P(wnlzn, B)- (1)

n=1

The marginal distribution for the set of words can be found by integrating over 6 and summing
over the topics:

P(wla,) = / P(6a) (HZP<zn|e>P<wn|zmﬁ>) . 2)

The marginal distribution of the corpus can be found by multiplying the marginal probabilities of
each documents:

M

P(Dla,8) = | [P(Oala)

(ﬁ > P(Zmnl) P(Win| 2, ﬁ)) d@] .

n=1 z,,

(3)

The key problem for LDA is estimating the hidden topic distribution z and the parameter 6 given a
document. The posterior for these two variables is given by:

P(z,w,0|a, 5)

: (4)

The posterior distribution is intractable for an exact solution but other estimation methods, such
as variational inference [21] and Gibbs sampling [22], can be employed to estimate these variables
and parameters.

3.3 METHODOLOGY

This section outlines our proposed methodology for selecting attack patterns that could be used
to attack a system using NLP. The proposed methodology aims to find attack patterns in CAPEC
that are “close” to the system description in the topic space. The methodology returns a ranked
list of attacks and is intended to be used as a suggestion for cybersecurity experts when assessing
the vulnerabilities of a system.

The steps of the methodology are as follows:
1. Extract and process the text of the attack database.

2. Learn a topic model of the attack database.

Report No. SERC-2019-TR-002 Date February 22, 2019

3. Extract the text describing the system from a model or other documents relevant to the
system.

4. Create a term-frequency vector from the extracted text of the system using only words that
match those in the attack database vocabulary.

5. Estimate the topic posterior distribution of the system using the attack database topic model
and the term-frequency vector of the system.

6. Calculate the KL divergence between the topic distribution of the system and the topic dis-
tribution of each attack.

7. Rank attacks using the KL divergence measure from minimum to maximum.

The proposed methodology is heavily reliant on the text that describes the system. In some cases,
design documents or operations manuals could be used in place of the system description or in
addition to the system description. If this documentation is not available, a model of the system
could be constructed. The text can be extracted from this model. In our example, documentation
of the system was not available and the Systems Modeling Language (SysML) [23] was used to
construct a model.

The KL divergence is a common measure for evaluating the similarity of two distributions:

Dice(PlQ) = Y Pli)log % (5)

where P and () are two discrete probability distributions. If P and () match exactly, then D (P||Q) =
0. Other measures of distribution similarity could be used in place of the KL divergence, but this
measure was selected due to its widespread use in information theory.

3.4 APPLICATION OF APPROACH

In this section, we describe our work on the application of the proposed methodology to an early
prototype design of Silverfish which has less functionality and capability than the full Silverfish
system. The text used in this example application was extracted from a SysML model of the system.

To the best of our knowledge, there are no methods for selecting an attack pattern for a given
system using text describing both the attacks and the system. The two methods described earlier
in the paper ([8] and [9]) require prior knowledge about the skill level of the attacker. Therefore,
these methods should not be compared to the proposed method. We limit our analysis to pro-
cessing the text from CAPEC, comparing different approaches to estimating the parameters of the
LDA and the number of topics, and testing the proposed methodology.

The first two steps of the proposed methodology extract text from the CAPEC database and esti-
mate a topic model. Topic modeling is an unsupervised learning algorithm which makes it difficult
to tune model parameters and validate the model. There are numerous decisions that must be
made when constructing a topic model ranging from how to process the data to the type of topic

Report No. SERC-2019-TR-002 Date February 22, 2019

model, e.g. LDA or correlated, to the number of topics. There is no standard methodology to ad-
dressing these decisions. Further, due to the unsupervised nature of the problem, metrics for
evaluating the quality of the model are not standardized.

The text data must be extracted and processed before a topic model can be learned. The first step
for processing the CAPEC text is to remove any attack patterns that do not have a description.
This reduces the number of attack patterns from 512 to 500. In its unprocessed form, the CAPEC
database has a vocabulary of over 11,000 terms. For a normal corpus, this would be a reasonable
or even small number of terms. However, the length of each attack description is relatively short
when compared with documents usually analyzed in NLP. Further, the unprocessed form of the text
includes punctuation, numbers, and repeated terms due to capitalization. In an effort reduce the
size of the vocabulary and to only give a more concise representation of the text in the database,
the following common NLP processing steps are performed on the corpus:

Remove punctuation
Convert all upper case letters to lower case
Remove numbers

Remove stop words

LA

Perform stemming

Several words that commonly occur in the English language are not relevant to NLP and can in-
ject noise into the modeling, i.e. “the”, “and”, “a”, “or”, etc. It is common to remove these stop
words before performing NLP. Stemming the terms in a vocabulary is also common practice. For
example, “attack” and “attacks” are considered separate terms in the raw text, but performing
word stemming reduces them to a single term. Porter’s stemming algorithm [24] was used as the
stemming procedure.

Once these processing steps are performed, the vocabulary is reduced to 4274 unique terms. How-
ever, there are still several terms in the vocabulary that appear only a handful of times, therefore,
terms that appear in less than one percent of the documents are removed. This reduces the vo-
cabulary to 1307 terms and concludes our processing procedure. The term frequency is calculated
for each term in the processed corpus and stored in a document-term matrix.

The next step of the methodology is to learn a topic model from the processed CAPEC text. Choos-
ing the number of topics for a topic model can be difficult as there is no “correct” answer due to
the unsupervised nature of the problem. Further, the parameters of the standard LDA can be esti-
mated using either variational estimation or Gibbs sampling. We combine these two problems by
evaluating topic models estimated using both methods with the number of topics ranging from
2 to 50. Three topic modeling evaluation metrics are used: CaoJuan2009 [25], Arun2010 [26],
and Deveaud2014 [27]. The objective is to find a topic model that minimize the first two metrics
and maximize the third. Figures 1 and 2 display these evaluation metrics for variational estima-
tion and Gibbs sampling, respectively. The topic models using variational estimation improve as
the number of topics is increased. However, the Deveaud2014 metric increases around 5 topics
when using Gibbs sampling and stays relatively constant as the number of topics increases. The
other two metrics improve as the number of topics is increased. This relationship indicates that

Report No. SERC-2019-TR-002 Date February 22, 2019

1.00

075

050

0.00

1.00

1.00
0.78
o
0.50 E
g
0.25
metrics:
0.00 ® CaoJuan2009
100 & Aun2010
M Deveaud2014
0.75
o
050 g
E
I\lm' E
0.25
0.00
23456789 1011121314151617 18192021 2223242526 27 282030 31 3233 34 3535 37 38 30 40 41 4243 44 45 46 47 48 4950
number of topics
Figure 1: Evaluation metrics for variational estimation.
a
g
metrics:
& CaoJuan2009
A Aunz010
B Deveaud2014
a
g
g

234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647 484950

number of topics

Figure 2: Evaluation metrics for Gibbs sampling.

Report No. SERC-2019-TR-002

Date February 22, 2019

1 2 3
o~ [aoce- [o I
aeso- [- we- [
aoversar- [«a- [o~
acw- [m= - [aurent- [
malici - - can _ password - _
secur- [N miect- neeo- [N
g U.bU U.IEIZ U.IEI4 U.IEIE 0.08 EI‘UU U.IEIW 0.62 063 UIEIEI Uﬁﬂ U.IUE UIEI3 0.04
] 4 5
arece- [seern- [
weo- [«so- [
reauest- [messag- [
<coct- | rort- [
cortert- | nost-
maiii~ | san- [

o
=1
=]
=)
o
=)
=
=]
=)
& -
)
=)
o
=1
=)
=3
=)
=3
=]

Prob
Figure 3: Top 10 words per topic.

Topic Distribution

0.2-
o
| - . .
1 2 3 4 5

0.0

Topic

Figure 4: Posterior topic distribution for example system.

we can either choose a large number of topics and the variational method or we can select a small
number of topics and use the Gibbs sampling estimation method. In order for topics to be more
interpretable, we decide to the Gibbs sampling procedure to learn a topic model with 5 topics for
estimating the parameters of the model.

Gibbs sampling is used to estimate a standard LDA topic model for the CAPEC database. In order
to remove the effects of random initialization of parameters, five models (each with a different
seed) are estimated and the model with the maximum posterior likelihood is selected. The top 10
words for each topic are displayed in Figure 3.

The next step is to collect text that describes the system. In this application of the methodology,
text was extracted from the SysML model. The text was processed using the same processing
procedure as the CAPEC text. However, removing stop words and filtering based on sparsity are
not necessary because only terms that appear in the CAPEC vocabulary are used for the system
term vector. Term frequencies were calculated for words that are in the CAPEC vocabulary and

Report No. SERC-2019-TR-002 Date February 22, 2019
10

assigned to word vector w®. The posterior distribution of topics for the system z° is estimated
using w’ and the learned topic model from the CAPEC database. Figure 4 displays the posterior
topic distribution for the system.

Table 1: Top 5 Attacks. This table contains the CAPEC ID, the distance between the attack topic
distribution and the system topic distribution, the title of the attack, and the summary of the
attack as listed in CAPEC.

CAPECID | Distance | Title Summary

619 0.001 Signal Strength Tracking In this attack scenario, the attacker passively monitors the signal
strength of the target’s cellular RF signal or WiFi RF signal and uses the
strength of the signal (with directional antennas and/or from multiple
listening points at once) to identify the source location of the signal.
Obtaining the signal of the target can be accomplished through multi-
ple techniques such as through Cellular Broadcast Message Request or
through the use of IMSI Tracking or WiFi MAC Address Tracking.

615 0.003 Evil Twin Wi-Fi Attack Adversaries install Wi-Fi equipment that acts as a legitimate Wi-Fi net-
work access point. When a device connects to this access point, Wi-Fi
data traffic is intercepted, captured, and analyzed. This also allows the
adversary to act as a “man-in-the-middle” for all communications.

495 0.007 UDP Fragmentation An attacker may execute a UDP Fragmentation attack against a target
server in an attempt to consume resources such as bandwidth and CPU.
IP fragmentation occurs when an IP datagram is larger than the MTU of
the route the datagram has to traverse. Typically the attacker will use
large UDP packets over 1500 bytes of data which forces fragmentation
as ethernet MTU is 1500 bytes. This attack is a variation on a typical
UDP flood but it enables more network bandwidth to be consumed
with fewer packets. Additionally it has the potential to consume server
CPU resources and fill memory buffers associated with the processing
and reassembling of fragmented packets.

623 0.008 Compromising Emanations Attack Compromising Emanations (CE) are defined as unintentional signals
which an attacker may intercept and analyze to disclose the informa-
tion processed by the targeted equipment. Commercial mobile devices
and retransmission devices have displays, buttons, microchips, and ra-
dios that emit mechanical emissions in the form of sound or vibrations.
Capturing these emissions can help an adversary understand what the
device is doing.

603 0.009 Blockage An adversary blocks the delivery of an important system resource caus-
ing the system to fail or stop working.

The distance between the system topic distribution and the topic distribution for each attack in the
CAPEC database was measured using the KL Divergence. The five closest attacks, in terms of dis-
tance in the topic space, found using this method are displayed in Table 1. The table also includes
the distance between the system topic distribution and the attack topic distribution and the sum-
mary of the attack as listed in the CAPEC database. The proposed method is difficult to validate
because ranking the best attacks is a subjective task. However, the returned results demonstrate
that the selected attacks target the communication subsystem. While the communication system
is encrypted, the Compromising Emanations Attack describes an attack where the signals are mon-
itored. The strength of the signal or the frequency of transmission could be used by an adversary
to gain knowledge about the system. This type of attack would not allow the adversary to gain
access to the system but it could be used to degrade the effectiveness of the system. In a separate
activity, a group of cyber analysts conducted a Red Team activity on the prototype system and
selected similar types of attack patterns as the proposed NLP method.

The five attacks with the greatest distance between the system topic distribution and the attack
topic distribution as suggested by the proposed method are displayed Table 2. This offers another
form of validation for the method. The attacks that are farthest from the system topic distribution
generally target keywords, browsers, and web applications. As the system does not have access to
the internet and is essentially a closed system, it seems reasonable that these attacks should not
be considered or be considered as low-likelihood of occurring.

We would like to point out that this list should be used as suggestion of possible attacks and not

Report No. SERC-2019-TR-002 Date February 22, 2019
11

Table 2: Bottom 5 Attacks. This table contains the CAPEC ID, the distance between the attack topic
distribution and the system topic distribution, the title of the attack, and the summary of the attack
as listed in CAPEC.

CAPECID | Distance | Title

Summary

199 1.03 XSS Using Alternate Syntax An adversary uses alternate forms of keywords or commands that result
in the same action as the primary form but which may not be caught by
filters. For example, many keywords are processed in a case insensitive
manner. If the site’s web filtering algorithm does not convert all tags
into a consistent case before the comparison with forbidden keywords
it is possible to bypass filters (e.g., incomplete black lists) by using an
alternate case structure. For example, the “script” tag using the alter-
nate forms of “Script” or “ScRiPt” may bypass filters where “script” is
the only form tested. Other variants using different syntax represen-
tations are also possible as well as using pollution meta-characters or
entities that are eventually ignored by the rendering engine. The attack
can result in the execution of otherwise prohibited functionality.

244 1.02 XSS Targeting URI Placeholders An attack of this type exploits the ability of most browsers to interpret
“data”, “javascript” or other URI schemes as client-side executable con-
tent placeholders. This attack consists of passing a malicious URI in an
anchor tag HREF attribute or any other similar attributes in other HTML
tags. Such malicious URI contains, for example, a base64 encoded HTML
content with an embedded cross-site scripting payload. The attack is
executed when the browser interprets the malicious content i.e., for
example, when the victim clicks on the malicious link.

32 1.01 XSS Through HTTP Query Strings An adversary embeds malicious script code in the parameters of an
HTTP query string and convinces a victim to submit the HTTP request
that contains the query string to a vulnerable web application. The web
application then procedes to use the values parameters without prop-
erly validation them first and generates the HTML code that will be ex-
ecuted by the victim’s browser.

86 1.00 XSS Through HTTP Headers An adversary exploits web applications that generate web content,
such as links in a HTML page, based on unvalidated or improperly vali-
dated data submitted by other actors. XSS in HTTP Headers attacks tar-
get the HTTP headers which are hidden from most users and may not
be validated by web applications.

63 0.91 Cross-Site Scripting (XSS) An adversary embeds malicious scripts in content that will be served
to web browsers. The goal of the attack is for the target software,
the client-side browser, to execute the script with the users’ privilege
level. An attack of this type exploits a programs’ vulnerabilities that are
brought on by allowing remote hosts to execute code and scripts. Web
browsers, for example, have some simple security controls in place,
but if a remote attacker is allowed to execute scripts (through inject-
ing them in to user-generated content like bulletin boards) then these
controls may be bypassed. Further, these attacks are very difficult for
an end user to detect.

a definitive ranking of the most harmful attacks. It should be used in conjunction with domain
knowledge when developing a cybersecurity system.

3.4.1 FUTURE WORK

There are several avenues for possible future work. First, the method is only applied to a single
relatively simple system and to one SysML model of that system. A more rigorous study in the
future should include several types of systems and a combination of text extracted from SysML
models and existing documentation. Second, improved topic models could lead to a better list
of attack patterns. While the standard LDA was used in this study, numerous versions of topic
models exist. One limitation of the CAPEC database is the relatively short description of each at-
tack. Several methods have been proposed for short texts that include using auxiliary texts such
as wikipedia [28, 29]. Domain knowledge of a subject can also be leveraged to improve the per-
formance of topic models [30, 31]. Finally, the method was demonstrated for the CAPEC database
but it could be expanded to CVE, CWE, or any other cybersecurity database with text.

Report No. SERC-2019-TR-002 Date February 22, 2019
12

CSRM Step STRAT Tool Support

1. High level, tool-based, system description produced by the SE
team, including the basic system architecture and functional Mission and System
description in SysML Specification

2. Blue team operational risk assessment, whose deliverable is a
prioritized list of undesirable functional outcomes, and
consequence analysis based on the system description

Systems-theoretic
consequence analysis

3. SE team derivation of potential resilience solutions based on the
results of operational risk assessment

Model-based solution
4. Red team prioritization of defense, resilience, and software identification
engineering solutions

5. SE team refactoring of system descriptions based on Red team
recommendations Simulation-based
solution evaluation

6. Blue team response to the refactored system descriptions

Table 3: CSRM process and associated tool support from STRAT. Overlap represents the steps of
CSRM that the respective component of STRAT supports.

4 TooLS EFFORT

The tools efforts follow two broad themes: (1) general tool support for conducting CSRM in section
4.1 and (2) more specific tools for conducting cyber analysis in section 4.2.

4.1 SYSTEMS-THEORETIC RESILIENCY ASSESSMENT ToOL (STRAT)

This section describes the tools used to support CSRM and identify appropriate resiliency solutions
based on systems-theoretic control and behavior models. The methodology expands on the con-
cepts defined in CSRM that lead to the identification of potential resiliency-enhancing strategies
for a given system. CSRM identifies potential resiliency solutions based on the mission and system
descriptions, inputs from stakeholders, and the judgment of the Systems Engineering team. The
methodology introduced in this section can be used to augment the CSRM by providing model-
based justification for the Systems Engineering (SE) team, or the methodology can be used on
its own to identify and evaluate appropriate resiliency enhancements. The tools and models de-
scribed in this section, the Systems-Theoretic Resiliency Assessment Tool (STRAT) is composed of
four main components: mission and system specification, systems theoretic consequence analy-
sis, model-based solution identification, and solution evaluation. The components of STRAT and
how they support the broader systems engineering methodology of CSRM are shown in Table 3.

Report No. SERC-2019-TR-002 Date February 22, 2019
13

4.1.1 DEVELOPMENT OF MISSION AND SYSTEM SPECIFICATIONS

STRAT method shares its initial steps with CSRM. Both the system and the mission it performs are
specified at a high-level along with a, preferably rank-ordered, set of unacceptable outcomes to
that mission. These pieces of information form the basis of the STAMP-based analysis from which
the system’s control structure and potential loss scenarios are derived. Ideally, the mission and sys-
tem descriptions are generated by consensus in an iterative process between the SE team and the
system owners. However, if the system owners are not available for engagement or if the SE team
represent the system owners, then the SE team can complete the descriptions independently. At
a minimum, the initial mission description should describe in natural language:

1. The overall mission objective and any sub-objectives,
2. The greater purpose the mission supports,

3. Criteria for mission success and failure,
4

. and any constraints on the environment in which the system operates to complete the mis-
sion.

The system description shall also describe in natural language how the system is intended to com-
plete the mission, any known components within the system, a basic functional description of the
system’s operation, and any other known constraints on the system’s operation. Preliminary mis-
sion and system descriptions should be developed by the SE team and the system owners over two
or three iterations and the length of the descriptions should not exceed one to two typed pages.
Agreeing upon a concise description has the dual benefit of scoping analysis to a more manage-
able degree for complex systems as well as preventing confusion about the goals of the mission
and how the system is used to help reach those goals.

Following the development of the mission and system descriptions, if the system owners are avail-
able for engagement, the STRAT method borrows from Step 2 of the CSRM- the Blue Team conse-
guence elicitation meeting. The Blue Team meeting engages the SE team with the system owners
to elicit a prioritized set of undesirable consequences or outcomes with respect to the use of the
system in the mission. The development of the list of undesirable outcomes is based on the agreed
upon mission and system specifications described previously. The SE team is responsible for facil-
itating the discussion and documenting the outcomes along with other relevant pieces of infor-
mation from the system owners. Such information could include, but is not limited to, the compo-
nents that would likely need to be attacked to produce that outcome and the potential method of
attack. The CSRM, for example, identifies an additional piece of information- STAMP type- to fur-
ther characterize the undesirable outcome in terms of the control action (or lack thereof) needed
to produce the outcome. All of this information collected from the systems owners forms the
foundation for the STAMP-based analysis and construction of the system’s control model.

In the event that conducting a Blue Team meeting as described in the CSRM is not possible, then
the SE team will need to rely on their understanding of the system and mission description and
personal expertise. Under these circumstances, the value of having a clear and consistent system
and mission description becomes evident. If the descriptions are easily understood, then it be-
comes more likely that a non-user or non-expert will be able to identify valid, and well-formed,

Report No. SERC-2019-TR-002 Date February 22, 2019
14

undesirable outcomes. Regardless of the team that develops the list of undesirable outcomes, the
rationale behind each outcome should be documented to enable any cascading effects in future
analysis to be traceable.

4.1.2 SYSTEMS-THEORETIC CONSEQUENCE ANALYSIS

Following the specification of the mission, system, and undesirable outcomes, the SE team per-
forms a systems-theoretic consequence analysis to define the system’s functional control struc-
ture, behavior, and potential scenarios that might produce undesirable outcomes. More specifi-
cally, this step of the methodology is based on Leveson’s STAMP model and STPA/STPA-Sec anal-
ysis tools. The STRAT follows the concepts of the STAMP model and performs most of the steps
in the STPA-Sec analysis tool, but the goals of each method differ. STPA-Sec identifies scenarios,
that could be the result of a cyber-attack, to focus cybersecurity efforts; however, STRAT uses the
STAMP-based analysis to guide the construction of models that are used to identify appropriate
locations and types of cyber-resilience strategies [32].

STPA and STPA-Sec begin with the identification of unacceptable losses in the mission at hand.
STRAT uses the information collection methods described in section 4.1.1 to perform this same
task. The set of undesirable outcomes generated by the SE team or the system owners are directly
mapped into the unacceptable losses used in the consequence analysis. Unacceptable losses in
STPA-Sec syntax are high-level events that typically imply total mission failure. Consequently, it
may be possible that some of the undesirable outcomes generated in the previous step may be
too specifically defined to be well-formed unacceptable losses. In such cases, there is likely an
implicit higher-level loss event tied to that outcome that should be defined. For example, multiple
undesirable outcomes may be able to be categorized as a more general type of unacceptable loss.
It should be noted, however, that the one of the purposes of beginning with the definition of
unacceptable losses is to scope later analysis, and therefore, the set of unacceptable losses should
not be so specific that the problem space becomes too complex.

After the definition of unacceptable losses in the mission, a set of hazardous conditions that could
contribute to one of the unacceptable losses are identified. In fact, some of the more specific
undesirable outcomes from the Blue Team elicitation are likely to describe a hazardous scenario
that could lead to a higher-level loss event. Hazardous conditions outline scenarios that could
occur during the operation of the system within the mission that would lead to an unacceptable
loss if they were to occur in combination with the presence of a worst-case environment. Young
and Leveson illustrate this by describing a nuclear power plant that has an unacceptable loss of not
producing power to the grid. A hazardous scenario for the power plant would be the shutdown
of the reactor, however, the associated unacceptable loss only occurs if there are no auxiliary
generators or if the reactor is shutdown longer than the endurance of the auxiliary generators [32].
Following the identification of hazardous scenarios, the basic control structure of the system is
defined. The development of the control structure is based on the controller, actuator, controlled
process, and sensor feedback loop seen in Figure 5.

The system’s control structure emerges as these loops are stacked on top of one another, in paral-
lel, or merged together, similar to the control structure of a fictional missile defense system shown

Report No. SERC-2019-TR-002 Date February 22, 2019
15

Control input or external information
wrong or missing

Controller
Inappropriate, Inadequate Control Process Model
ineffective or Algorlthm inconsistent, incomplefes
missing (Flaws in creation, Process or incorrect Inadequate or
control changes, Incorrect modification missing feedback
action or adaptation) Feedback delays
Actuator Sensor
Inadequate Inadequate
Operation Operation
Delayed Incorrect or no
operation information
provided
Controller Conflicting Controlled Process Measurement
2 Control actions Component fal!ures inaccuracies
»| Changes over time > Feedback delays

Process output
contributes to hazard

Process input missing
or wrong

Unidentified or
out-of-range
disturbance

Figure 5: The generic control loop structure that is used to formulate the control model. (adapted
from [1]).

in Figure 6. The combination of these loops creates a hierarchy of controllers and controlled pro-
cesses that begins to describe the technological and organizational mechanisms that the system
uses to operate within its mission domain. More specifically, the hierarchical control structure
defines how commands and control actions propagate from the higher-level controllers to lower-
level controllers or controlled processes and how those lower-level entities provide feedback to
their higher-level controllers [1]. Identifying how the system accomplishes these tasks is the first
step to understanding how unintended or uncontrolled system behavior can lead to unacceptable
losses.

Defining the control structure allows for the enumeration of the control actions available to each
controller within the hierarchy. Since the STAMP causality model asserts that hazardous conditions
are the result of performing control actions improperly, the enumeration of control actions allows
the SE team to identify the scenarios under which improperly implemented control actions lead
to hazardous conditions, and thus, potential unacceptable losses. Improper control actions can be
categorized into four types of implementation:

1. Providing the control action leads to a hazardous condition

2. Not providing the control action leads to a hazard

3. Providing the control action too early, too late, or in the incorrect order leads to a hazard
4. Stopping a control action too soon or performing a control action too long leads to a hazard.

By creating a table of the possible control actions and how each type of improper implementation
of those control actions can lead to hazardous conditions, the SE team begins to identify poten-
tial areas of concern within the control structure through the process of elimination. Some control
actions will not have scenarios that create hazardous conditions for all of the improper implemen-

Report No. SERC-2019-TR-002 Date February 22, 2019
16

. Early Warning Radar
Command Authority System
L + T
Exercise Results RAadar
e Status Roquest | . iness Made Change
s
Wargame Results Sistus Raquest
Launch Report
e Lol Status Report Track Deia
T Engage Target H—
Workarounds (:A:rd gllg Chango 1 l
l | Weapons Free
Operators Fire Control
atignal Moda Command Responses
m State System Status
— - ey — Launch Repon
Weapon and System Status == Launchar Fire Disable
Fire Enable
rational l'-hde
= Launch Position m‘*‘“ 57'}‘3‘”“‘
BIT command Stow Positon -
Task Load Parlorm BIT
Launc BIT Results
lI:":'me«t‘;-nlu-wmil :*w. Launcher Position
Sale
1 Soltware Updatos l
Interceptor Launch Station
Simulator
ot 1|
Acknowledgemenis Acknowledgemenis BIT me
BIT resuhs BIT results Task Load
Health and Status Health and Status L.Hmd;‘ -
ey L
Sale
Soltware Updates
T B
i Slatus Computer
Vaoltages = _I
Arm
BIT Info IS'“
Sale and Arm Status e
=1 Intarceptor "J
Hardware

Figure 6: A “stacked” control structure of a fictional missile defense system (From [2]).

Report No. SERC-2019-TR-002

17

Date February 22, 2019

tation types because of the nature of the control action. Thus, those cases can be ignored in future
analysis, thereby reducing the problem space. Furthermore, the SE team will be able to take note
of any control actions that can lead to the same hazardous condition for multiple improper imple-
mentation types. These control actions can be flagged as areas to investigate more thoroughly in
later analysis.

The final step in STPA and STPA-Sec involves the construction of causal scenarios that describe
why an improper control action was taken. The identification of these scenarios facilitates an un-
derstanding of the impact cyber events have on the mission- something with which traditional se-
curity methodologies may struggle. Furthermore, identifying the potential mechanisms through
which adverse outcomes can occur helps motivate the choice of appropriate resilient design pat-
terns later on.

The main artifacts of the STAMP-based consequence analysis are the definition of the system’s
functional control structure and the documentation of the relevant system losses, hazards, haz-
ardous control actions, and causal scenarios. These artifacts aid the SE team in understanding
the manner in which vulnerabilities can propagate through the system in addition to forming the
foundation for the construction of the system and behavior models.

4.1.3 MODEL-BASED SOLUTION IDENTIFICATION

4.1.3.1 THE SYSTEM MODEL

While the STAMP-based consequence analysis facilitates understanding of the system’s control
structure and identifies potential pathways for vulnerabilities that lead to adverse outcomes, it
does not produce an analyzable model. Consequently, it becomes advantageous to represent the
system’s control structure, unacceptable outcomes, and other STAMP-based analysis information
in graphical form. This representation allows for the visualization of the control actions, the resul-
tant changes to the system, and the emergence of mission-level consequences from those actions.
Furthermore, the graphical formulation allows for the beginnings of a quantification of the qual-
itative subject matter obtained in the mission and system specifications and the consequence
analysis.

The graphical representation of the system, its control structure, and the consequence analysis
necessitates a special definition of its graphical objects. This graph, known as the specification
graph, or S-graph [33], shares similarities to the definition of a multidigraph or quiver [34]. How-
ever, the S-graph’s vertices and edges are supersets of dissimilar sets of vertices and edges. The
need for differing types of vertices and edges arises from the representation of the elements in
the control loop shown in Figure 5, and therefore STRAT modifies the general notion of S-graph
into what we call the Sim-graph. The Sim-graph models actors in the system by having its ver-
tices represent an entity from the generic control loop, a combination of those entities, a physical
state, or a function that represents an outcome. It follows that the edges in the graph represent
the actions performed by or resulting from the actors.

Following these concepts, the Sim-graph is composed of a combination of six types of vertices:
outcome vertices, state vertices, actuator vertices, sensor vertices, controller vertices, and meta

Report No. SERC-2019-TR-002 Date February 22, 2019
18

vertices. The outcome vertices describe the presence or absence of certain conditions from the
consequence analysis, such as the presence of a hazardous condition or the occurrence of an unac-
ceptable loss. State vertices are broadly defined as the set of variables or controlled processes that
are not also controlling a lower-level process, such as vehicle’s location, speed, etc. As the name
implies, actuator vertices represent an actuator in the system’s control structure that receives
input from a controller and acts upon a controlled process. Likewise, sensor vertices represent
a sensor in the system’s control structure that monitors a controlled process or state and sends
feedback to a controller. The Sim-graph’s controller vertices represent a controller in the system’s
hierarchical control structure. Due to the control hierarchy, a controller vertex will both receive
inputs from a higher-level actuator and send control actions to a lower-level actuator, and vice-
versa for its corresponding sensor vertices, unless the vertex is the highest-level controller in the
system. Finally, meta vertices can be used to represent a combination of controllers, actuators,
sensors, or controlled processes. This allows for the possibility that an entity in the hierarchical
control structure shares the responsibilities of two or more of the parts of the generic control
loop. An example of such shared responsibilities is illustrated in Figure 6.

The edges of the Sim-graph are also of different types. These types include action edges, feedback
edges, and conditional edges. Action edges represent the control actions or dynamics through
which a higher-level vertex influences a lower-level vertex. For example, a controller vertex may
have multiple action edges from itself to the subsequent actuator vertex that represent the control
actions available to that controller in the system’s control structure. Feedback edges represent
data or information that is propagated from a lower-level vertex to a higher-level vertex, such as
the feedback from a sensor to its higher-level controller. Finally, the conditional edges represent
the inputs to an outcome vertex.

Using these definitions to the varying types of vertices and edges, a mathematical definition of the
Sim-graph is as follows. The specification graph, S, is a 4-tuple similar to a multidigraph, or quiver:

S:=(V.E,p,t)

where V' is the superset of nodes in the graph, E' is the superset of edges, p : © — V assigns
each edge toits parent vertex, and ¢ : £ — V assigns each edge’s target vertex. Furthermore, the
superset V is defined:

VDO,X,A D,C,M

where O is the set of outcome vertices, X is the set of state vertices, A is the set of actuator
vertices, D is the set of sensor vertices, C' is the set of controller vertices, and M is the set of
meta vertices. Likewise, the superset E is defined:

EDB)Y,Z

where B is the set of action edges, Y is the set of feedback edges, and 7 is the set of conditional
edges.

The structure of the Sim-graph shares striking similarities to a quiver- such as the potential to

have multiple edges between two nodes, each with its own identity. However, the combination

Report No. SERC-2019-TR-002 Date February 22, 2019
19

of disparate sets of vertices and edges, each representing a system component or behavior that
may governed by incompatible mathematics, presents significant challenges to performing math-
ematical operations on the Sim-graph. Consequently, the Sim-graph is currently used to simply
represent a visualization of the system and help formulate the behavior model in Simulink. The
mathematical definition of the Sim-graph, however, does provide a starting point for future efforts
intending to automate analysis of the system model.

4.1.3.2 THE SIMULINK BEHAVIOR MODEL AND SIMULATION

Due to the Sim-graph’s potential limitations with respect to automated analysis techniques, it
becomes necessary to use simulation for identifying appropriate resiliency strategies. Simulink
provides the necessary tools for simulating the structure and behavior described in the Sim-graph
without the difficulties associated with the mathematics of the graphical representation. Simulink’s
and Stateflow’s combinatorial and sequential decision logic tools and other model elements en-
ables the abstraction of some of the Sim-graph’s complexity into a more easily executable form.
More specifically, through a series of source blocks, mathematical operators, state machine dia-
grams, and flowcharts, this step of the methodology constructs a simulation of the system’s in-
tended behavior. The simulation of normal behavior is then used to determine where and how
adverse behavior can be introduced, thus leading to the identification of appropriate resiliency
strategies and their location within the system.

As previously mentioned, one of the difficulties associated with the definition of the S- graph is the
diversity of what the vertices and edges represent. The Simulink model allows for these different
types of vertices and edges to take on actual implementations of what they represent. For exam-
ple, one particular controller in the system may follow a decision model that is describable in a
truth table, whereas another controller operates based on a set of differential equations. Simulink
enables both to be encoded to the desired level of granularity in the behavior model.

It should be noted that each behavior model and simulation is heavily dependent on the system in
question and its associated mission. However, by using the Sim-graph as a starting point, each of
the types of vertices and edges generally map to similar model elements within Simulink regardless
of the system being modeled. Table 4 presents the types of Sim-graph elements mapped to a
Simulink model element that should sufficiently describe its behavior for most applications.

By using Simulink source blocks and state machine diagrams to represent the state vertices, the
simulation takes on a scenario-based format. This allows the SE team to generate conditions that
produce the intended behavior of the system within the mission. Once the system’s normal, or in-
tended, behavior is represented by the simulation, then the SE team can explore ways to generate
unintended or undesirable system behavior.

The SE team can take two approaches to producing undesirable behavior: by creating starting
conditions based on the hazards defined in the consequence analysis, or by finding ways to gen-
erate the causal scenarios outlined in the consequence analysis. For each approach, the SE team
documents the nature of any undesirable behavior that is generated, how it was generated, a list
of potential mitigation strategies for that behavior, and the locations within the system for im-
plementing those strategies. The potential mitigation strategies are based on the resilient design

Report No. SERC-2019-TR-002 Date February 22, 2019
20

Type Corresponding Simulink Model Element

Outcome Vertex | Truth table

State Vertex Source block and/or State machine diagram

Actuator Vertex | State machine diagram

Sensor Vertex State machine diagram and/or math operator blocks
Controller Vertex | State machine diagram or truth table

“Meta” Vertex State machine diagram

Type of Sim-graph Edge

Action Edge Embedded in truth table or state machine diagram
Feedback Edge Inputs/outputs to and from sensor vertex model element

Conditional Edge | Inputs/outputs to outcome vertex truth tables

Table 4: A mapping of Sim-graph elements to a Simulink model element that should sufficiently
represent its behavior in most applications.

patterns described by Jones and Horowitz for System-Aware cybersecurity [35].

The first approach defines a set of starting conditions that are either immediately hazardous, or
likely to become hazardous. As an example, imagine that the model describes an autonomous
vehicle. In this case, some of the state vertices would describe any obstacles in the vehicles path
along with the vehicle’s current speed and heading. Following the scenario-based construction
of the model, these variables would be programmable to be immediately hazardous at the start
of the simulation, i.e. an obstacle directly in the path of the vehicle’s current heading and within
the vehicle’s safe-maneuvering perimeter. In this scenario, the system’s behavior should account
for this hazardous condition and attempt to mitigate the danger. If the system is unable to ade-
guately handle such inputs, then the SE knows to investigate the introduction of some safeguards
or resiliency measures to mitigate such situations. The selection of potential resiliency strategies
and their location depends on the nature of the hazardous condition and varies from system to
system.

The second approach to generate undesirable behavior in the simulation aims to generate haz-
ards from within the model, rather than starting with hazardous conditions. More specifically, the
initial starting conditions are such that the system should be expected to behave in its intended
manner, however, the SE team changes parameters, noise levels, or other model elements with
the intent of producing hazardous or unacceptable outcomes. Following the autonomous vehicle
example described above, the intent would be to produce unsafe behavior from “normal” condi-
tions. One potential method for doing so could involve introducing additional noise or bias into
the system’s obstacle detection sensors. In a non-resilient system, this could easily result in the
failure to detect and avoid an obstacle, thus creating a hazardous scenario and a potential unac-
ceptable loss. Where these changes intended to produce unintended behavior occur within the
system and what is being changed define the possible resilient design patterns that would be ap-
propriate. For instance, in the above example, if increased noise in the obstacle detection sensors
leads to undesirable behavior, then an appropriate resiliency strategy would be to include a noise
monitoring algorithm and redundant backup sensors.

Report No. SERC-2019-TR-002 Date February 22, 2019
21

Both of these approaches should be used to describe all of the hazardous conditions and causal
scenarios from the consequence analysis as appropriate- it is possible that not all the items from
the consequence analysis are applicable to both approaches. Once all of the consequence analy-
sis items are exhausted, the SE team should have a list of potential resilience strategies and the
locations within the system for their implementation. At this point, the SE team should use their
discretion to remove any strategies that address scenarios that might be unrealistic or are oth-
erwise infeasible. Furthermore, it is possible that the list may contain some duplicate strategies;
these items in the list should be merged and the number of duplicate entries recorded as this can
be used as a measure of priority in strategy evaluation.

4.1.4 EVALUATING RESILIENCY SOLUTIONS

The choice of which resiliency solutions to implement is a multi-criteria decision problem primarily
involving the cost of the solution, the impact of the solution on the adverse outcome(s) to be mit-
igated, and the likelihood of the adverse outcome(s) occurring. How each of these factors, among
the many others not mentioned, is dependent on the preferences and worldviews of the decision-
makers. Furthermore, the cost of a resiliency solution, which includes the monetary value, the
complexity of design, and the ease of integration into the system, varies greatly depending on
the application. Thus, analysis of the cost factor is outside the scope of this thesis. However, the
simulation and STAMP-based consequence analysis enable an evaluation of the adverse outcomes
to be addressed by the solution as well as the solution’s impact on those adverse outcomes. By
taking advantage of the similarity of these two factors to the traditional definition of risk, the set
of resiliency solutions can be prioritized into “risk” categories. These categorized solutions form a
cost-agnostic recommendation of which resiliency measures to pursue. For every entry in the list
of solutions identified based on analysis of the simulation, there is an associated list of adverse
outcomes addressed by a particular solution. These adverse outcomes and the impact of those
solutions form the basis of the “risk” measure based on the traditional definition [36]:

risk = impact x likelihood

For the purposes of this application, impact is a measure of the number of adverse outcomes that
a solution intends to address, the priority of those outcomes in the consequence analysis, and the
effect of adding that solution on the operation of the system. This solution’s effect on the system
can be determined by adding in a representation of the solution to the simulation and compar-
ing the results to the unaltered system if the nature of the solution allows. Otherwise, the effect
must be judged qualitatively. Likelihood is a measure of the ease of achieving adverse outcomes
in the simulation. More specifically, the number of changes to the simulation needed to achieve
an adverse outcome and the severity of those changes. It should be noted that this definition of
likelihood does not incorporate a probabilistic assessment of the ability of potential adversaries
to create those changes in the system as such is out of the scope of this thesis. However, methods
for creating such an assessment could easily augment the methods described here.

Given the nature of the factors that make up the impact and likelihood measures, quantitative
metrics defining each dimension of the “risk” score are difficult, if not impossible to identify.
Therefore, impact and likelihood are categorized into rankings of low, medium, and high. Thus,

Report No. SERC-2019-TR-002 Date February 22, 2019
22

Impact
Low Medium High

High Medium

Medium

Likelihood

Low

Figure 7: The risk matrix prioritization framework for resiliency solutions.

the risk matrix framework can be readily applied to this application and resiliency solutions are
categorized into low, medium, and high priorities for implementation [36].

After generating the set of recommended resiliency solutions in the risk matrix framework, all or
a subset of the resiliency solutions can be applied to the system and the analysis iterated on the
“new” updated system. A strength of the methodology presented in this section is the ability to
refactor in resiliency solutions at multiple different steps. Solutions could be refactored into the
initial system and mission descriptions or simply incorporated into the simulation model. Either
approach offers greater confidence that all appropriate resiliency solutions are considered for a
particular system.

Results of STRAT are shown in Section 5 for the Silverfish use case.

4.2 CYBOK AND SECURITY ANALYST DASHBOARD

This section describes the development of two tools. The first, Cyber Body of Knowledge (CY-
BOK) is an information retrieval tool for systems engineers, security analysts, and requirements
engineers. This tool discovers relevant attack information at the earliest possible stage of systems
development using models of systems. The second, is called Security Analysts Dashboard, which
is a combined user interface for CYBOK and graph transformations of SysML models. This tool
presents the system topology, attack vector information, and the requirements diagrams defining
the specification of the mission—therefore, allowing a common language between systems engi-
neerings and security analysis within the MissionAware framework. Both these tools stem from
past years research [37—-39].

4.2.1 ROLE WITHIN THE MISSIONAWARE FRAMEWORK

MissionAware first defines the possible mission scenarios and then it identifies both the possible
mission hazards but also the type of threat space that is potentially going to be associated with the
system architecture (Figure 8). The War Room is the fundamental concept in MissionAware. The
War Room produces a body of information that drives system hazard analysis and SysML modeling

Report No. SERC-2019-TR-002 Date February 22, 2019
23

Mission Goals from ‘
Stakeholders

Step 1: Identify Critical GraphML Ontology
Assets and their workflows Model

that have significance to
system and mission resilience

Step 2: What are opportunities of an
attack with respect to System
Resilience: CYBOK

Enables formal analysis
of CPS relationships .

e

(artack surface

surrogate)

SysML

= models Step 3: What are
ps of an attack -
Affect Adversary's ..
capability to exploit, Formal = .-
?’fact,ordagrada Analysis o7 —— i
arget System [Family of attacks with
+* Cost) mpac respect to a mission
Benefit critical assets
Analysis * Known Attacks
tahiars : + Synthetic Attack
e Refactoring Chains (composed)
- architecrure to
R :lL]kITI.‘!\'E\' w,"'u:r
— e on resilience.
B e Dperviten

3

Figure 8: Where Security Analyst Dashboard and CYBOK Fits into MissionAware

efforts—that capture the mission requirements, admissible behaviors of the system, architectural
features of the system, identification of hazards, identification of critical assets, and assessment
of high level threats. The SysML modeling activity takes the output of the War Room and encodes
mission critical information into workflow models to understand the potential threat space asso-
ciated with the mission. This is the stage in which the tools; that is the dashboard and CYBOK, are
used to help the system analysts and security engineers gauge the relevant vulnerabilities (and
associated attacks) of the system and threat actors.

Through the Security Analyst Dashboard, the analyst extracts vulnerability information that is po-
tentially applicable to the mission and the system architecture. CYBOK’s information retrieval pro-
cess does the preliminary steps to this by using the system model to identify relevant attack pat-
terns, weaknesses, and vulnerabilities. As described in the architecture section (Section 4.2.2.2),
the results are evaluated at various levels of granularity, and in multiple compositions, to assess
whether relationships between model elements align with common interfaces between attacks,
which should give insight into whether an attack chain is consequential to a system and its mission.

Report No. SERC-2019-TR-002 Date February 22, 2019
24

4.2.2 CYBOK

To secure systems from emerging threats, systems engineers and security analysts alike need to in-
tegrate an attacker’s view of vulnerabilities into their design, development, and analysis process—
as early as possible. This is a basic tenant in MissionAware cyber security: a system’s cyber secu-
rity approach requires taking the attacker’s perspective and relate these attacks to possible conse-
guences to best understand how to strategically defend a system. To date, this attacker perspective
activity has been a largely a manual process conducted by subject matter experts who examine
a system and identify possible vulnerabilities. Moreover, these “red team assessments” tend to
occur at later stages in the design and implementation lifecycle—where security modifications are
more costly to implement and overall less effective. This does little to help the designer in trying
to establish operational assurance early on in the system’s development phase, and ultimately
makes it more difficult for the security analyst later on.

Specifically, CYBOK is a tool that takes as input a graph system model, and uses it to identify known
attack patterns, weaknesses, and vulnerabilities pertaining to the system by taking advantage
of existing knowledge bases. CYBOK utilizes open databases, catalogs, and repositories used fre-
guently in the threat sharing community. The aim of CYBOK is the creation of a tool which curates
cyber security domain knowledge, for example, CAPEC, CWE, CVE, to provide usable information
to both the security analysts and system engineers.

The general contributions of CYBOK are the following:

1. CYBOK is a multi-view search engine on how to relate threat information in a systems model
context. It views the diverse set of security data repositories (CAPEC, CWE, CVE, CPE, etc.) as
greater than the sum of their individual parts. Uncovering the synergistic relations in these
diverse set of repositories and casting the information into system model perspective is the
innovative aspect of CYBOK.

2. CYBOK generates a set of queries from a graph model of the system, creates aggregate sum-
maries of the search results, and creates a direct association between components and at-
tacks for further analysis.

3. CYBOK’s information retrieval is driven by the system perspective—a SysML model, mission
requirements, and operational assurance needs. Information from the SysML model of the
system is distilled into a graph schema, encoded in the standard GraphML format. This is
done automatically through a separate tool, graphml_export.

4. The results obtained by CYBOK can be easily examined, iteratively modified and decom-
posed and disseminated among the designers throughout the system lifecycle process.

4.2.2.1 DATASETS

At present, we integrate three databases; that is, CAPEC, CWE, CVE, into the CYBOK search engine.
Each of which serve different roles in cybersecurity analysis. Specifically, CAPEC, CWE, and CVE
inform about attacks, weaknesses, and vulnerabilities, respectively. Therefore, each provides a
different perspective on the security posture of a system. In addition to these diverse focal points

Report No. SERC-2019-TR-002 Date February 22, 2019
25

Table 5: Key features of each of the attack vector datasets.

Cybersecurity Known

Resource Focus Representation Size Relationships Data Format
Pseudo-ontology of Hierarchical . Human readable text,

CAPEC Attack Patterns Graph 527 Links to CWE & CVE common technical words
Pseudo-ontology of . .

CWE Weaknesses and Hierarchical 806 Links to CAPEC & CVE Human readable text,

e Graph common technical words
Vulnerabilities
Repository where
snounce oy e the CPE Name B human readable

CVE e Instance-based 113,098 Y descriptions, with additional
vulnerabilities for the affected software info such as CVSS scores
found in their version(s); Links to CWE
software
Provide universal
identifiers for Specially formatted;

CPE software platform Instance-based 177,432 Used by CVE see the CPE specification
(single or multiple for details; Uses
versions), as requested platform-specific names
by Vendors

Exploit-DB Code repository Organized by 40,843 N/A Program code; some

for PoC cyber-attacks Target Platform human readable text

in the cybersecurity domain, instances of these datasets have direct relationships to one another
and often relate to the same concepts from different viewpoints (Table 5). In addition to CAPEC,
CWE, and CVE, we also list CPE and Exploit-DB.

CAPEC, is a pseudo-ontological hierarchy of attacks. It describes these attacks based on techniques
used to accomplish them, as well as with respect to the goal of the attack (such as collecting infor-
mation or manipulating a state). There are over 500 attack patterns contained in it, described in
natural language, with content ranging from very concise descriptions to attack execution flows to
detection and mitigation strategies. A deficiency of this collection, beyond its incomplete entries,
is that it rests at a high level; even low-level attack patterns are rarely specific about applicable
languages or platforms. However, numerous attack patterns refer to weaknesses in CWE that they
target, and few refer to CVE instances of platform vulnerable to such attacks.

CWE weaknesses are organized according to multiple views, such as where in development the
fault arises, or by abstractions of the software behaviors. Like CAPEC, it is pseudo-ontological,
providing a high level understanding of each of the concepts leading to vulnerability. It is tightly
related to CVE, which describes specific platforms that have vulnerabilities. CVE is a repository
where vendors may report the presence and status of an exploitable vulnerability in an affected
platform. Descriptions are short and do not always state the applicable attack. These instances may
also contain CVSS scores (a widely accepted scoring system for vulnerabilities) and references to
CWE. Finally, each CVE instance possesses a list of all CPE identifiers for affected versions of the
platform.

CPE is, instead, a database of specific platforms which provides a standard naming convention for
those platforms to assist in vulnerability assessment, and which is used by CVE. At present this can
be inferred from matches to CVE instances, but could be further integrated in the future, possibly
giving an alternate route to modeling where CPEs are included in the model where available. CVE
provides real instances of weaknesses from CWE becoming vulnerabilities, providing a platform-

Report No. SERC-2019-TR-002 Date February 22, 2019
26

Resources Composing CYBOK I

&
[9]

@w Platform Specificity HI&

Qﬂac ker Perspective 5y5[e>

Figure 9: lllustration of the perspective each dataset has on the problem of cybersecurity.

specific perspective on how weaknesses occur. Even though Exploit-DB is not well connected to
these other datasets, we include it because it is related to CAPEC in much the same way as CVE
is to CWE—it provides real instances of attacks against specific platforms. Figure 9 illustrates the
perspectives each of these databases has and how they are related.

Via the web, CAPEC, CWE, and, CVE can be searched on their respective websites using simple
text-based queries, however this is inefficient for complex systems. In this context we need to be
able to perform numerous searches on each component and interaction modeled in our system.
Since no single one of these provides a complete picture on the system itself, the faults leading
to vulnerability, and the attacks that can leverage such faults, it was deemed necessary to include
each of these datasets in order to accomplish such a holistic perspective. We developed a search
engine that incorporates all three of these datasets, and takes advantage of the interconnected-
ness they provide, in order to allow for efficiently identifying the threats to a target system.

4.2.2.2 ARCHITECTURE AND IMPLEMENTATION

CYBOK is implemented with a top-level search handler that takes incoming queries and search pa-
rameters and feeds them into two lower-level search processes, the index handler and the TaxaS-
core handler. The index handler performs a text-based search with the option of scoring instances
with TF-IDF weighting, a well-established scoring method in the natural language processing liter-
ature. The TaxaScore handler processes parameters for how taxonomic scoring is to be performed
and takes results from the text-based search and scores the ancestors and descendants of CAPEC
and CWE instances to flesh out the families of threats associated with the matched instances.

This search process is wrapped in a command-line interface through which the Security Analyst
Dashboard communicates with the CYBOK search engine. Through the command-line interface,
inputs in the form of single queries, GraphML models, and parameter settings may be processed

Report No. SERC-2019-TR-002 Date February 22, 2019
27

and searches may be performed, outputting relevant threat information to the provided input.
The command-line interface also provides a mechanism through which attack surface and exploit
chain analysis can be performed, with these results being output in GraphMLand to command line,
respectively. The architecture that accomplishes all the above functions is depicted in Figure 10.

The implementational aspects of the CYBOK architecture are as follows:

1. Command-line interface for executing CYBOK functions, which can be used directly or through
the Security Analyst Dashboard.

2. Build and update process—a process that can be executed at command-line which down-
loads CAPEC, CWE, ans CVE from the web, processes the XML documents, and builds the
necessary search index and taxonomies to be used by the CYBOK search process.

3. A text-based search engine with parameters for text-based weighting and what sources to
search and/or report.

4. A graph-based search engine with numerous parameters controlling scoring of ancestors
and descendants of matches to CAPEC and CWE instances, used to map a match of a threat
to its more general and specific variations.

5. Search commands at command-line accepting either a single query or a GraphML model
which can be used to run the text-based, and optionally graph-based, search processes,
outputting results to CSV and GraphML.

6. Graph-related methods for processing GraphML models, attack surface analysis, and exploit
chain analysis.

Together these features comprise a customizable search engine which can be used by the Security
Analyst Dashboard and the security analyst to perform model-based threat assessment. In the
following paragraphs we briefly describe the architecture of each of these components.

Command-line interface. CYBOK is operated via a command-line interface which manages var-
ious parameters for what the input will be and how the search will be done. It can be run on
individual queries using the —search flag, or on a model using the —input flag. In either of these
instances, their are additional flags for enabling and fine tuning the use of taxonomic scoring.
There is also a flag, called -target, for finding possible exploit chains. Also, from the command
line, the flag —update can be used to download CAPEC, CWE, and CVE form their sources, extract
the data from these, and build the search index and taxonomies.

Search Handler. The search handler performs top-level logic of the CYBOK engine, handling
the parameters of the underlying index and TaxaScore Handlers and controlling the flow of data
between them when performing searches. The key value of this component is that it separates
the logic defining text-based searches and that of taxonomic scoring, while also controlling the
high-level search logic determining what sources are to be searched and reported, and whether
results of text-based searches are to be passed into TaxaScore or not. It ensures that data output
from CYBOK is consistent in either search case, with or without taxonomic scoring.

Whoosh/Index Handler. The index handler implements the core functionality underlying CY-
BOK'’s text-based searches. The text-based search process is implemented with the open-source

Report No. SERC-2019-TR-002 Date February 22, 2019
28

CAPEC
| Web)‘_, A{ CWE
CVE§|
Build Whoosh
—> Dowr}load and » Extract Instances > Index and
Update T i
axonomies
Command-
Line -
Interface Search Whoosh \ Taxa
Results - -
Index Handler
—>» Search Handler TaxaScore <
Handler N
Attack
M Attack Surface »| Surface
Analysis
—»| Graph Methods 1 ~
]] Exploit
Exploit Chain » C‘I;gizls
Analysis —

Figure 10: Architecture of CYBOK.

python library Whoosh, which handles indexing and searching of documents. The basic premise
of a text-based search is that you find documents that share matching terms with the input query,
in this case a system description, and you score them according to how well they match. The in-
dex handler manages the location of the Whoosh index to be searched, lookups this index, and
generally records how text-based searches are to be performed. Namely, it allows for the user to
select whether to use TF-IDF weighting or not, which is useful for determining the role taxonomic
scoring has on the overall score produced by CYBOK. By controlling the text-based searches in-
dependently of taxonomic scoring, the index handler allows us to modify the text-based search
module without interfering with downstream processes.

TaxaScore Handler. TaxaScore is a novel scoring process targeted at taxonomic datasets such as
CAPEC and CWE. These datasets have the property that ancestors of an instance, its parent, par-
ent’s parent, and so on, describe more general forms of the threat concept, whereas their children
represent more specific variations of the same concept. Accounting for this property, the key idea
behind taxonomic scoring is that if we know with some certainty that an instance is relevant to
our search, we can infer that so too are its generalizations and possible more specific forms. Thus,
TaxaScore implements a scoring mechanism where the user can define the weight contribution
that matches what their ancestors and their descendants should have when considering the value
of a threat family with respect to a query or system description.

TaxaScore applies weights in three ways (Figure 11). First, a matched instance receives a score

Report No. SERC-2019-TR-002 Date February 22, 2019
29

Diagram of TaxaScore weighting scheme

CAPEC-255 score = a*t

T

(a) | CAPEC-153 score = a*t

(by| CAPEC-126 score = m*t

Y Y L

(c)| CAPEC-76 CAPEC-139 CAPEC-597

score = d*t/3 score = d*t/3 score = d*t/3

Figure 11: Diagram of TaxaScore scoring breakdown for a match with score t. (a) Shows the score
an ancestor receives from the match, (b) shoes the score a matched instance receives, and (c)
shows what score each of the children will receive.

equal to the weight of the matched, t, scaled by a constant m. Each ancestor of a match receives a
score of the initial weight t scaled by a constant a. Lastly, a score of t times d is equally and recur-
sively subdivided among children. After scoring all matched instances of a taxonomy, an instance’s
score is the sum of scores it received from ancestors, descendants, and from being matched di-
rectly.

In this way, TaxaScore uses the semantic understanding of the CAPEC and CWE graphs to extract
out the broader context in which attack and weakness entries reside, informing the analyst of the
full nature of matched threat families. As opposed to returning disparate instances of CAPEC and
CWE, disconnected from the branches they are part of, TaxaScore ensures that each generaliza-
tion of a matched threat concept is represented in the results of a search. The TaxaScore Handler
is in charge of processing parameters for how taxonomic scoring is to be done and performing
taxonomic scoring on CAPEC and CWE instances. In the current build, TaxaScore is available from
command line in a separate branch or out code repository, but is not yet integrated into the Se-
curity Analyst Dashboard.

4.2.2.3 GRAPH METHODS

CYBOK contains a handful of methods for handling the GraphML file that stores the system model,
and for assessing threats against that model. Two key parts of this are the methods involved in

Report No. SERC-2019-TR-002 Date February 22, 2019
30

computing the attack surface of the model and the potential exploit chains throughout the system
topology.

Attack Surface Analysis. The attack surface of a system is comprised of those pieces of hard-
ware and software which can can serve as entry point for an attacker, or in other words, what
is accessible from the outside either physically or virtually. By incorporating the “Entry Points”
attribute into the model, the user can tell CYBOK which parts of the model they consider to be
accessible, and CYBOK will identify which of these, if any, have possible attacks, weaknesses, and
vulnerabilities to consider. By using the —input flag from command-line and inputting a model,
CYBOK automatically will perform searches over all attributes, and will then construct the attack
surface in GraphML from the model and those “Entry Points” attributes which returned results,
outputting this GraphML file alongside the search results.

Exploit Chain Analysis. Exploit chains are possible paths through a system that can be attacked
in sequence in order to go reach a target subsystem. CYBOK provides a tool that attempts to predict
possible exploit chains by finding all possible paths through the system from its attack surface to a
user-selected target node, where each node and edge on the path results in possible threats from
a search in CYBOK of its attributes. When performing a search with the -input flag, exploit chains
can additionally be provided by using the -target flag and providing the name of a component in
the system. These two graph-based processes may give valuable insight to the analyst about how
the system may be attacked, according to how the model has been defined and the threats which
have been identified.

In summary, these components give CYBOK the capability to perform model-based threat assess-
ment by matching threats from CAPEC, CWE, and CVE to user-provided descriptions contained in
a model or in a single query. The numerous parameters available for fine-tuning TaxaScore allow
the analyst to control how much weight to give to family members of matched threats, and the
attack surface and exploit chain analyses allow for the prediction of possible paths that can be
taken by an attacker to disrupt the system, thereby informing on possible mitigations that need
to be made.

4.2.2.4 USAGE

CYBOK constitutes the core engine of the Security Analyst Dashboard, being in charge of identi-
fying relevant threats to a system model. The search process done by CYBOK is a multiple step
process that involves a text-based and a graph-based search. In Figure 12, we show the process
and which paths are followed when doing a basic search (-search, in green), a model search
(-input, in orange), and a model search with the exploit chain analysis (-target, in red). The
-input and -target flags are additive with respect to the basic search and model search pro-
cesses, respectively. This diagram shows how either a single query or multiple queries taken from
a model are processed by CYBOK to report relevant threats, and optionally construct the attack
surface and exploit chains of an input model.

In its most basic form (using the —search flag), a text-based search is done using the Whoosh
library. Optionally, TF-IDF weighting can be used at this step to report the similarity of returned
documents to the query by using the —use_tfidf flag. Following the text-based search, a tax-

Report No. SERC-2019-TR-002 Date February 22, 2019
31

Model Search
-input

GraphML
Parser

Basic Search
-search

Query Handling

Y
Text-Based Search in
Whoosh

Taxonomic Search

with TaxaScore -use_taxa set

to false
P S R S
Y
Attack Surface
Analysis
I > Exploit Chain
Analysis

-target

v

Threat

Evidence Attack Surface

Exploit Chains

Figure 12: Process diagram of CYBOK. Green dotted path denotes basic search process (-search
flag). Orange dashed path indicates the additional attack surface analysis that occurs when doing
a search of a model (-input flag). Red path indicates the exploit chain analysis that occurs when
the —target flag is included in a model search.

onomic search can be done by setting the —use_taxa flag to true. In this case, TaxaScore takes
the related weaknesses to any matched CVEs, as well as matched CAPEC and CWE instances, and
scores the ancestors and descendants of these instances to additionally report the more general
and specific forms of matched threats. There are additional flags determining the weights applied
to this scoring process for configuring TaxaScore. The results of this process can then be output in
a CSV format where each row presents a matched instance, its score, relationships, and contents.

When performing a model search with the —input flag, CYBOK accepts a GraphML file storing
the model as input. It iterates over nodes and edges, performing a search on each text attribute
found. This behaves according to the same process as the basic search, but outputs a CSV where
rows indicate which system component/edge and attribute produced each result. Additionally,

Report No. SERC-2019-TR-002 Date February 22, 2019
32

the model search outputs a GraphML file with the attack surface, computed from “Entry Points”
attributes which matched threats in the databases. If the -target flag is included with the name
of a component in the model, the attack surface and the obtained search results will be used to
determine all paths in the system from entry points to the target component for which threats
were found on each node and edge.

4.2.3 SECURITY ANALYSTS DASHBOARD

The SysML model produced by the War Room exercise describes the system in both a graphical,
relationship-based manner, as well as each of its components and interactions in natural language.
Since a goal of MissionAware is to determine the relevant threats to this system model, it presents
aneed for model-based threat assessment at this stage. To accomplish this, we have developed the
Security Analyst Dashboard in order to mediate the relationship between the model and the threat
assessment process. The dashboard consists of a robust Ul with a number of tools for visualizing
and editing the model (outside of SysML), as well as CYBOK, the search engine underlying the
threat assessment process. With CYBOK to identify the threats associated to the model and the
dashboard to assist in visualizing these results with respect to the model, the Security Analyst
Dashboard is capable of informing the analyst about the threats facing the system and informs
where mitigative actions might be necessary.

There are a number of important features implemented in the Security Analyst Dashboard which
help it to perform model-based threat assessment and inform the analyst on the security posture
of the system. These are:

1. System Topology View. A view which allows the analyst to examine and modify the sys-
tem model, facilitating assessment of the model, and which can be used alongside threat
assessment results to examine possible exploit chains through the system topology.

2. System Specification View. A hierarchical visualization of the mission requirements spec-
ification which can be used alongside threat assessment results to trace violation of mission
requirements.

3. Attack Vector Visualization. A tool for visualizing and filtering results of the threat assess-
ment in three distinct forms, (1) a graph view illustrating each threat entry and its relation-
ships with other threats as a node and edges, (2) a list-tree view giving summary information
about each entry and allowing to delve into its interconnected instances, and (3) a tabulated
“bucket” view showing attributes and contents of each entry which allows the analyst to se-
lect important results of the threat assessment into a container which can be exported to
CSV.

Together, these features give the Security Analyst Dashboard the mechanisms needed to allow an
analyst to explore the system model and the threats associated with it, as determined through the
two-part search process done by CYBOK (Figure 13).

The results produced by CYBOK via the basic and model-based search are used by the Security
Analyst Dashboard to provide the analyst with the relevant threat information and possible attack
paths that the system faces according to the descriptions put into the model.

Report No. SERC-2019-TR-002 Date February 22, 2019
33

Security Analyst Dashboard s X

File View Cybok Filter
Attack Surface | | Perform Analtysis | | Add to Bucket
) Attack Vector Space | Artack Vector Tree | Specifications
Camera
T All =| | Filter Graph Clear
magery Application Processor
\!
A CWE116
\\]
A
|
Imagery Radio Module
t caPEE-83
{ caPEC2E CWELH
L]

|
Zighee / e L]
GCS Radio Module s areces cargean
F AN L wE20 e
PR
// \ CAPEC-50 ‘ CAPEC-463
Differential Pressure Sensor Laptop ° W"i.TBl TAPECH9
In []
GPS I'." FCS Radio Module - capEC.147
\\ . .
NMEAGPS | Wiski

e AL CWE 822
Pnimary Application Processor .
- — cWEAoo
a R
Safety Switch Processor | lute Pressure Sensar

Control Surface |
Accelerometer Gyroscope Magnetometer

[o:] Attack Description = Violated Components
] CVE-2018-0101 CVE-2018-0100 pplication Processor]
] CVE-2018-0160 CVE-2018-0160 |

o 515 Free plication Processar]
] 19 m| on of 0 ns w & Bouni 2 Memo _ [Primary App
1 CAPEC-100 Overflow Buffers [Prima

‘signal Handler Function Associated with Multiple Signals Emry ication P

Signal Handlar Bara Canditinn

Figure 13: A screenshot of the Securing Analyst Dashboard, showing a system topology with pro-
jected attack surfaces and exploit chains, the Attack Vector graph view, and the bucket. Each fea-
ture of which will be mentioned later.

4.2.3.1 SYSTEM TOPOLOGY MODEL VIEW

The system topology model describes the design of the model under analysis (Figure 14). The
model includes the individual components used, attributes that help describe their function, and
edges that describe how they interact with the other components of the design. Specifically, the
dashboard looks for the Entry Point, Device, Operating System, Software, and Firmware attributes.

Occasionally, the analyst may want to make minor modifications to their designs to quickly see the
effects of changing certain components without having to constantly switch between programs.
To address this issue, a simple model editor is included (Figure 15). This model editor allows the
changing of an components name, attributes, and edges. Once modifications have been made, the
analyst may redo the attack vector analysis facilitated by cybok. Once the analyst finds a design
they are happy with, they have the option to export the model back into a graphml file for use
elsewhere.

Additionally, the topology model view includes a feature to view attack surfaces and exploit chains.
The attack surfaces show the entry points in which an attacker may exploit to affect the system.
The attack chains show paths from entry points to a specific component showing through what
paths an attacker may violate a component.

This view will enable the analyst to quickly determine the security state of the design and locate

Report No. SERC-2019-TR-002 Date February 22, 2019
34

Camera

Imagery Application Processor

Imagery Radio Module

Zigaee

GCS Radio Module

Differential Pressure Sensor / Laptop

GPS FCS Radio Module

NMEA GPS Wi-Fi

X

Primary Application Processor

—

Safety Switch Processor Absolute Pressure Sensor

Control Surface
Accelerometer Gyroscope Magnetometer

Figure 14: A screenshot of a system topology with projected attack surfaces displayed. The model
was created in SysML and exported to GraphML using graphml_export, a plugin for MagicDraw.

areas where defenses or resilience techniques could be applied without requiring the investigation
of every individual attack vector.

4.2.3.2 SYSTEM SPECIFICATION VIEW

The System Specifications Model View provides a view from the MissionAware perspective, show-
ing unacceptable losses, potential hazards during operation, and safety constraints. The require-
ments define overall operation, control actions, and necessary functionality. A custom hierarchical
layout manager divides the provided specifications in three different groups:

1. Mission level requirements describe the overall operation of the design.

Report No. SERC-2019-TR-002 Date February 22, 2019
35

Node Name |3nmary Application Processor \

Attributes |Edges |

Attribute Value
Software Autopilot navigation control algo
Device ARM STM32F4
Firmware 12C SPI UART SDIO low-level driv...
Operating System ChibiOS RTOS

| cancel | | Apply |

Figure 15: Screenshot of the model editor for a specific component. Showing the component name
and the associated attributes that describe it.

L1 Loss of Resources L3 Loss of Materiel L2 Loss of Sensitive Information
=) : .
o H1 Absence of Information H2 Inaccurate /Wrong Information H3 Loss of Control in Unacceptable Area
w
w
=
S(2.1 valid UAV Operation SC3.1 Safe & Secure Flight Control
5C42 Collect Data 5C&.3 Send Feedback 5C41 Control Surfaces
5 \ \
A 4
g CAL 2 Collect Data CA21UAV Operation CAL.3 Send Feedback CA41 Move Confrol Surface CA3.1 Flight Control
=
S
(W
8 Imagery Application Processor Laptop FCS Radio Module Imagery Radio Module Control Surface Primary Application Processor
=
&

Figure 16: Screenshot of the system specifications view.

2. Functional requirements describe the functions the design needs to perform.

3. Structural requirements is comprised of elements used in the system topology, justifying
their use by what function they serve.

The specifications view uses the attributes type, which can be one of the values Mission, Function,
or Structure, and text which describes the requirement. The type attribute is used by the layout
manager to determine what group to place it. The text attribute is used by the overlay renderer
to display the description of the requirement when the analyst mouses over the node.

Report No. SERC-2019-TR-002 Date February 22, 2019
36

CWE-116
[]

| CAPEC-608 | Cryptanalysis of Cellular Encryption
O tueass CwE-327 | Use of a Broken o fisky Cryptographic Algorithm
T | CWE-208 | ion Exposure Through Timing Discrepancy.

CAPEC-28
L]
] Reflection Attack in an Authent
CAPEC-B8 , e I 328 | Reversible One-Way Hash
° CWE-2¢ N <
L CWE-780 | Use of RSA Algorithm without OAEP

L CWE-916 | Use of Password Hash With Insufficient Computational Effort

g AR e | CWE-T59 | Use of a One-Way Hash without a Salt
cweTsl cAPEC-99

CWE-B8
|

AF using the Linux ker
e for an attacker to
\AE 409an
passenger-car occupants vi

CWE-776 CAPEC-147
o

CWE-400

CWE-320
CAPECE3 [}
L] DB2 for Linux, UNIX and Windows 97, 10.1, 105, and 11.1) u

CVE-2018-6619 | + Easy Hosting Control Panel (EHCP) v0.37.12.b makes it easier for attackers

Figure 17: Screenshot of the two attack vector visualization methods, the left showing the graph
view, and the right showing the tree view.

The traceability between levels help the analyst do a what if analysis on the effects of a system
element violations from the perspective of the specifications of the system; that is, by seeing if a
system element is violated what higher-level requirements could also be violated.

4.2.3.3 ATTACK VECTOR VISUALIZATION

Attack vector visualization is an important tool that enables the analyst to easily navigate the ex-
pansive jungle of attack vectors that could potentially compromise a component of the system
topology. To accomplish this, the analyst has a choice of two different visualization methods.

1. Graph View. A graphical representation of the attack vector space by showing both intra-
related and inter-related connections between elements. The attack vectors are displayed
where the CAPECs, CWEs, and CVEs are shown using red, blue, and yellow vertices respec-
tively and the vertex size relates to the amount of connections associated. Analysts can
interact with the view by moving each vertex around to help with visibility and by changing
the perspective. By default, CVEs are hidden to help reduce the number of vertices shown
without sacrificing important information. Shown on the left side of Figure 17.

2. Tree View. A structured tree representation of the attack vector space by showing the
parent vertices as top level nodes that can be expanded to show the related children. This
view uses the same color scheme as the graph view to maintain the consistency between
views. Shown on the right side of Figure 17.

Both visualization methods include functionality that allows the analyst to select, delete, or open
a web page with more information on a selected attack vector.

Another tool available to the analyst is the bucket (Figure 18). The bucket is a collection of at-
tack vectors the analyst selected that they deem important to be further investigated or report
to stakeholders. The collection is represented as a table where each row shows the attack id, de-
scription, and what components the attack vector potentially violates. Additionally, the contents

Report No. SERC-2019-TR-002 Date February 22, 2019
37

1) Attack Descrigtion Viglated Companents
T 5 U O U T By U FTTFRATY APTCATAT FIUCESSUT, WWER OFS]

|AMRX Fingerpninting [MMEA GPS]

|05 Command Injection Primary Application Processor, NMEA GPS]
ML Parser Attack [Primary Application Pracessar, NMEA GPS]
Improper Encoding or Escaping of Output I'llr!hpﬂll.‘ll.im Processor, NMEA GPS]
Untrusted Pointer Dereference ication Processor, NMEA GPS|

Improper Restriction of Power Consumption

ary Application Processor]

Figure 18: Screenshot of the bucket.

of the bucket can be exported to a CSV file as a method of reporting the analysis to stakeholders
or the contents of a CSV can be imported to populate the bucket. The CSV file includes the attack
id, name, description, and the violated components. In the case of the graph and tree view, the
filter bar also has the option of showing only the contents of the bucket.

Each of the visualization methods listed above also include filtering functionality. The attack vec-
tors visible can be filtered based on the attack id, name, description, and by what components
they violate. This allows the analyst to further narrow the visible attack vectors to what’s relevant
to the design.

4.2.4 |IMPLEMENTATION

The current implementation of CYBOK is written in Python 3.6. XML documents are parsed us-
ing BeautifulSoup4. The text-based search index is implemented using the open-source library
Whoosh. For handling GraphML files, NetworkX is used. The main version of the code also uses
matplotlib and pygraphviz for visualization of the system topology and exploit chains.

The current implementation of the Security Analyst Dashboard is written using Java 8. The main
user interface is created using Java’s standard Swing library. The GraphML parsing is accomplished
using the standard XML parsing libraries and rendered using then open-source library Graph-
Stream. Interfacing with CYBOK is done by creating a python subprocess which allows operation
much like how it would be called as if from a command prompt.

4.2.5 SUMMARY

In summary, the Security Analyst Dashboard in conjunction with CYBOK provide tools in which
both systems engineers and security analyst can assess a designs security state during the initial
design process from the perspective of the attacker. The analyst can use the potential threats as
identified by the attack vector threat assessment completed by CYBOK and displayed using the
attack vector visualization tools alongside the unified system topology and specifications views,
allowing the analyst to make informed defense and mitigation choices to protect the system.

Report No. SERC-2019-TR-002 Date February 22, 2019
38

5 APPLICATION TO SILVERFISH

5.1 DESCRIPTION OF SYSTEM

CSRM [3] along with the STRAT tools is applied to a case study to test for efficacy of the new tools
on a hypothetical new system. This system, known as Silverfish, is a theoretical weapon system
deemed to be sufficient in terms of realistically representing a weapon system that could be used
by the Army to perform a particular mission.

The system is defined as follows. The Silverfish system performs an area denial mission to aid
the protection of a strategically sensitive location. More specifically, Silverfish deploys a set of
50 ground-based weapon systems, known as obstacles, that can engage unauthorized persons or
ground vehicles within the denied area. The denied area measures up to approximately .16 square
miles in size, with each obstacle capable of protecting a 300 foot by 300 foot area. A set of surveil-
lance sensors including static infrared and video cameras and target characterization sensors, such
as acoustic and seismic sensors, provide situational awareness by monitoring the area for persons
and vehicles. An unmanned aerial vehicle also provides surveillance and early warning information
by monitoring the periphery of the denied area. The Silverfish operator controls the obstacles and
situational awareness sensors remotely from a nearby vehicle that can be maneuvered to give the
operator “eyes-on” monitoring over portions of the denied area. The operator has control over
the obstacles’ armed or disarmed states and fire capabilities. He or she uses the situational aware-
ness information available to determine target identity and the appropriate obstacle with which
to engage the target. A wireless network relays the operator’s commands from the control sta-
tion to the obstacles. Furthermore, the operator has the ability to communicate with a command
and control center to receive orders and additional situational awareness information. The system
operates according to the following assumptions:

¢ Purpose: Deter and prevent, when and where necessary, via the use of rapidly deployable
obstacles, adversarial tracked vehicles or individuals from trespassing into geographic areas
that are close to strategically sensitive locations.

* Prohibited Area: 100 acres of open field space. At maximum speed a vehicle would take
about 3 minutes to cross the prohibited area.

¢ Obstacle Deployment: About 50 obstacles are available to be distributed over the 100 acre
protected area (each obstacle is designed to protect a 300x300 foot area). Each contains
six (6) short-range sub-obstacles, each covering a 60-degree portion of a circular area to be
protected.

e Operation: The operator, located in a vehicle that is operated close to the prohibited area
(150 meters away), remotely controls individual obstacles and their sub- munitions, based
upon sensor-based and operator visual surveillance of the prohibited area.

* Prohibited Area Surveillance: The operator is supported by obstacle-based acoustic and
seismic sensors that can detect and distinguish between vehicles and people, redundant
infrared sensors that can detect and track the movement of people and vehicles, and real-
time Video/IR derived early warning information regarding people and vehicles approaching

Report No. SERC-2019-TR-002 Date February 22, 2019
39

the prohibited area provided by a UAV managed by the operator. The UAV is used to provide
warning information.

e Obstacle design features: The obstacle-based sensors provide regular operator situation
awareness reports when they detect a trespasser, reports on their location, their on-off
status, and their remaining battery life. The obstacle confirms the acceptance of commands
and the actual firing events.

¢ Infrared sensor configuration: A single pole-mounted IR sensor is assumed to be capable of
providing surveillance of the entire protected area. A second sensor is provided for redun-
dancy, and can be used to provide surveillance of areas that the single sensor is not able to
observe.

e Requirements for Avoiding Errors: Concerns exist regarding activating sub-obstacles in cases
where non-adversarial vehicles or people, by chance, enter the prohibited area. Concerns
also exist about failing to fire munitions when an adversary is approaching a strategically
sensitive location via the prohibited area. The operator, when possible, can use visual ob-
servations to increase confidence regarding fire control.

e Operator Functions: The operator can set the obstacles into either on or off modes and
can cause individual or designated groups of obstacles/sub-munitions to detonate when in
on mode. Obstacles can be commanded to self-destroy designated critical information in
order to prevent adversaries from collecting such information for their own purposes. The
operator also can launch a quad-copter drone (UAV) to provide video/IR based early warning
information regarding potential trespassers of the protected area.

e Communications Systems: The communication system includes digital interfaces that sup-
port formatted data transfers between the operator’s system, the UAV subsystem, the indi-
vidual obstacles, the IR subsystem, and the C2 Center.

e Operator Control Station: The operator is provided with a vehicle-mounted computer(s)
subsystem that provides situation awareness information including individual obstacle sta-
tus, and sensor-based situation awareness information. The subsystem also provides computer-
based entry and corresponding system feedback for control inputs from the operator.

e Command Center Controls: The C2 center digitally provides system control information for
the operator (determines obstacle system on/off periods, provides warning of periods of
higher likelihood of attack, provides forecasts of possible approach direction to the prohib-
ited area, enables operation with/without UAV support, etc.).

A high-level, concept of operations representation of Silverfish is presented in Figure 19, using
SysML. More details about the hardware and software design can be found in [3].

Report No. SERC-2019-TR-002 Date February 22, 2019
40

bdd [Model] Resiience Designs [Basa Systom |

C2 Inerface UAY intarface

Earty Distpction Alerts & Commanas

Fiolayed Commands & Foodbach = *blocks
IR Camara
ablocks Commards o Obsiackos & Relayed Foodback
L | Dperator Control Station —
Doctring, Orders, Status Repors, otc
ablocks I
‘ Network/Radic Reloy
ausas S |
ablocks
) Relayed Commands & Feodback ————————————— — Fire Upan)
—+ |
e ablocks .

Operator | Anti-TankObstacle | | Enamy

Figure 19: A Concept of Operations representation of Silverfish in SysML.

5.2 APPLICATION OF STRAT

This section details an application of the approach described in Section 4.1 on the hypothetical
US Army weapon system analyzed for the CSRM, known as Silverfish. Results are then compared
with the recommendations of the CSRM to assess the compatibility of the methodology with ex-
isting techniques. The methodology presented in this section uses the same mission and system
descriptions and Blue Team-defined unacceptable consequences as the CSRM to allow compari-
son of recommendations. As stated in Section 4.1, the tools used in this report do not necessarily
require that this information be collected in the same way as the CSRM; however, it should be ac-
knowledged that engaging the system owners increases the veracity of the collected information.

5.2.1 MISSION AND SYSTEM SPECIFICATION

The Silverfish system was initially developed to be a testbed for the application of the CSRM. Al-
though it is a hypothetical system, the US Army Armament Research, Development, and Engi-
neering Center (ARDEC) determined that the system is both representative of a system that could
potentially be used by the Army and is suitable for the demonstration of cybersecurity techniques.

Report No. SERC-2019-TR-002 Date February 22, 2019
41

The assembled Blue Team, composed of members of the ARDEC, and the SE team developed the
initial Silverfish mission and system descriptions through a series of iterations before agreeing
upon the final description below [3].

The Silverfish system performs an area denial mission to aid the protection of a strategically sen-
sitive location. More specifically, Silverfish deploys a set of 50 ground-based weapon systems,
known as obstacles, that can engage unauthorized persons or vehicles within the denied area.
The denied area measures up to approximately .16 square miles in size, with each obstacle capa-
ble of protecting a 300 foot by 300 foot area. A set of surveillance sensors including static infrared
and video cameras and target characterization sensors, such as acoustic and seismic sensors, pro-
vide situational awareness by monitoring the area for persons and vehicles. An unmanned aerial
vehicle also provides surveillance and early warning information by monitoring the periphery of
the denied area. The Silverfish operator controls the obstacles and situational awareness sensors
remotely from a nearby vehicle that can be maneuvered to give the operator “eyes-on” monitoring
of the portions of the denied area.

The operator has control over the obstacles’ armed or disarmed states and fire capability. He
or she uses the situational awareness information available to determine target identity and the
appropriate obstacle with which to engage the target. A wireless network relays the operator’s
commands from the control station to the obstacles. Furthermore, the operator has the ability
to communicate with a command and control center to receive orders and additional situational
awareness information. For the purposes of this thesis, the analysis and recommendations are
limited to the components that are “owned” by the Silverfish system. This means that the com-
mand and control center, the UAV, and the vehicle have their capabilities and inputs to the system
considered when identifying resiliency strategies, but changes to these systems are out of scope
for analysis.

Following the framework described in Section 4.1, the criteria for mission success are simple: all
unauthorized persons or vehicles in the denied area are engaged correctly for the duration of the
mission. Mission failures result from unauthorized persons or vehicles successfully traversing the
denied area or friendly fire incidents.

Following the finalization of the mission and system descriptions, the Blue Team and SE team met
to develop a prioritized list of unacceptable consequences with respect to the Silverfish mission.
The CSRM supplemented this meeting with SysML representations of the agreed upon mission
and system descriptions. Each entry in the list of consequences received a priority based on the
following Likert Scale:

1. Unacceptable and highest priority to provide resiliency

2. Avoid as long as resiliency solution does not over-complicate operation
3. Would like to avoid, but solution needs to be incremental

4. Lowest priority, low-cost, simplistic solutions should be considered.

Within each prioritization level, the consequences were further ranked based on the Blue Team’s
perception of their severity. For each consequence, the potential targets of an attack that would
produce that outcome was identified, along with the potential method for completing the attack.

Report No. SERC-2019-TR-002 Date February 22, 2019
42

Finally, the types of inappropriate control actions that would be associated with that consequence
were identified using the following scale:

1. Providing a control action causes a hazard

2. Not providing a control action causes a hazard

3. Incorrect timing or improper order of control actions causes a hazard

4. A control action is applied too long or stopped too soon.

The output of this meeting is presented below in Table 6.

Likert | Consequence Attack Target(s) Attack Method Control
Rank Action
Type

1.1 Inappropriate firings via | Operator control display, | External, supply | 1,2, 3
manipulating operator | radio comm links chain, insider
commands

1.2 Delays in fire time (sufficient | Obstacles, control sta- | External, supply | 2,3
delay to cross field) tion, radio comm links chain, insider

1.3 Delays in deployment Obstacles, deployment | Supply chain, | 2,3

support equipment insider

1.4 Deactivation of a set of ob- | Obstacles External, insider 1,3
stacles

2.1 Delays in situational aware- | Operator display, sensors | External, insider, | 1,2, 3
ness supply chain

2.2 Prevent or corrupt transmis- | Radio comm links, opera- | External, insider, | 1,2, 3
sion of situational aware- | tor display, sensors supply chain
ness data

2.3 Gain information to help | Obstacle, operator con- | External, insider 2,3
adversary navigate through | trol station
field

3.1 Reduced operational lifes- | Obstacle External, supply | 1, 2, 3,
pan chain, insider

3.2 Prevent transmis- | Operator display, obsta- | External, insider, | 1,2
sion/execution of non-firing | cles supply chain
commands

4.1 Delays in sending/receiving | Operator display, radio | External, supply | 1,2,3
C2 information comm links chain

4.1 Delays in un-deployment Obstacles External, insider, | 1,2,3

supply chain

Table 6: The list of Blue Team-derived undesirable consequences.

The list of unacceptable consequences, along with the Silverfish mission and system description,

Report No. SERC-2019-TR-002

43

Date February 22, 2019

form the ground truth from which all further analysis is based. Following the completion of this
step, the STRAT does not require further involvement of the system owners (Blue Team) or other
non-SE team members, unlike the CSRM.

5.2.2 SYSTEMS-THEORETIC CONSEQUENCE ANALYSIS

As described in Section 4.1, following the definition of the mission and system descriptions and
the identification of undesirable consequences, STRAT uses STAMP and STPA-Sec concepts to doc-
ument unacceptable losses, hazards, and the system’s control structure.

The mission and system descriptions defined the basic conditions for mission success and failure.
Silverfish achieves mission success if no unauthorized agents traverse the denied area for the du-
ration of the mission; mission failure occurs when unauthorized agents successfully traverse the
denied area or obstacles are fired upon friendly forces. These two definitions translate into the
following unacceptable losses or outcomes for this mission:

e L1-Enemy forces or other unauthorized persons/vehicles traverse the denied area without
the operator’s knowledge or intent,

e L2 - Friendly forces, civilians, or other non-combatants are killed or harmed by Silverfish,
e |3 —Silverfish obstacles are fired without a valid target.

Unacceptable losses L1 and L2 clearly map to the stated mission of Silverfish; however, L3 was
derived as an additional, lower priority unacceptable loss because of the implications it has on
the outcome of the mission. As seen in the outcomes described in Table 6, the Blue Team is con-
cerned about losing control of Silverfish or Silverfish not being able to operate as intended for
the mission’s duration- L3 describes a third end-result of such consequences that does not involve
friendly fire or the immediate traversal of unauthorized agents through the denied area.

Following the definition of the unacceptable losses, the STRAT defines the hazardous conditions
that could lead to an unacceptable loss. These hazards define conditions that do not immediately
result in an unacceptable loss, but will lead to an unacceptable loss given an improper imple-
mentation of a control action or the presence of a worst-case environment. Table 7 defines a set
of hazardous conditions, the worst case environment for those occur in, and the unacceptable
losses associated with that hazard.

Next, the basic control structure of the Silverfish system is defined. Using the control loop format
described in Section 4.1 and Figure 5, Silverfish is decomposed into its main controllers, sensors,
actuators, and controlled processes. Based on the system description, Silverfish consists of an op-
erator who controls the obstacles and visual sensors through a control station over a wireless
network. This involves the operator overseeing three controlled processes: fire control, surveil-
lance, and target characterization. The operator manages all three processes through the control
station. The obstacles actuate fire control commands, the visual sensors actuate surveillance and
target characterization, and the characterization sensors (acoustic and seismic) also enable target
characterization. The sensors provide feedback to the operator on the three controlled processes
via the control station. This basic structure is presented in Figure 20. It should be noted that the
simplicity of this particular system is not necessarily shared by other systems.

Report No. SERC-2019-TR-002 Date February 22, 2019
44

\ Hazard Worst Case Environment Associated Losses
H1- Failure to fire correct ob- | Imminent threat entering de- | L1
stacle nied area
H2- Incorrect obstacle armed | Friendly in denied area L1, L2, L3
or fired
H3- Wireless link to obstacles | Imminent threat in denied | L1
down area
H4- Situational Awareness | Imminent threat entering de- | L1, L2
data inaccurate, delayed, or | nied area; friendly agent in
unavailable denied area

Table 7: Hazardous Conditions that could lead to an unacceptable loss.

Operator

Control Station

4

Characterization

Sensors
Y

Obstacle

Fire Control

‘ Visual Sensors '+

| Surveillance }

-

Target
Characterization

Figure 20: The basic control structure of Silverfish.

From this control structure, the control actions available at each hierarchical level are enumer-
ated, and the conditions under which each control action contributes to a hazard identified. In
the representation of the system described in Figure 20, the control actions available to operator
are effectively identical to those available to the corresponding lower levels of the system. Conse-
guently, those control actions for the other hierarchical levels of the system are omitted from the
control actions in Table 8 as they would be redundant. Again, this characteristic is a result of the
simple nature of the Silverfish system, and not indicative of other applications. Understandably,
however, if the lower level controllers do not enact the operator’s control actions accurately, then
hazards are likely to occur.

The final step of the consequence analysis involves the generation of causal scenarios that describe
the implementation of improper control actions. The undesirable outcomes defined by the Blue
Team motivate the definition of causal scenarios associated with each control action. These causal
scenarios help motivate the choice of appropriate resiliency measures in the next step by providing

Report No. SERC-2019-TR-002 Date February 22, 2019

45

Control Action Not Providing | Providing Incorrect Tim- | Stopped too

causes hazard Causes hazard ing or Order soon or applied
too long

Operator Control Actions

CA 1.1- | Target in denied | Friendly in de- | Target not in | Target not in

Arm/Disarm area- H1, H3 nied area- H2 range- H1 range- H1

Obstacle

CA 1.2- Fire Ob- | Target in range- | Friendly in | Target not in | Target not in

stacle H1, H3 range- H2 range- H1 range- H1

CA 1.3- Adjust | Target not | Target goes | Target Target goes

visual sensor | identified- H1, | unidentified- unidentified- unidentified-

field of view H3, H4 H1, H4 H1, H4 H1, H4

Obstacle/Sensor Control Actions

CA 2.1- Send | Operator Data is | N/a Target goes

feedback doesn’t receive | corrupted- unengaged- H1
data- H1, H3, H4 | H1, H2, H4

Table 8: Control actions and the conditions under which they would contribute to a hazard.

details on what might cause a control action to be implemented improperly. Table 9 presents
control actions mapped with an associated causal scenario and the priority rank of the related
undesirable outcome(s) from the Blue Team.

] Control Action | Causal Scenario

CA1l1

\ Blue Team Outcome
1.1,1.2,1.4,

Legitimate operator control action overrid-
den or altered due to cyber-attack on con-
trol station or network

Legitimate operator control action given,
but improper due to misclassification of tar-
get

Legitimate control action overridden or al-
tered due to cyber-attack

Cyber-attack causes delay, denial, or in-
creased rate of control action application

CA1l.2 2.1,2.2,3.2,4.1

CA1l1l3 2.1,2.2,2.3,3.2

CA21 2.1,3.1,3.2

Table 9: Causal scenarios for implementing an improper control action mapped to undesirable
Blue Team outcomes.

5.2.3 MODEL-BASED RESILIENCE SOLUTION IDENTIFICATION

Model Construction

The next step in the STRAT begins with the development of the graphical system model. This model
shares the same basic shape as the hierarchical control structure identified in the consequence

Report No. SERC-2019-TR-002 Date February 22, 2019

46

analysis, but incorporates additional STAMP-related information. Using the definitions outlined in
Section 4.1, the Sim-graph for the Silverfish system is presented in Figure 21. Each vertex and edge
is color-coded to the types described previously.

The vertices labelled 1, 2, 3, 5, and 7 map directly to their corresponding blocks in the control
structure shown in Figure 20. The vertices labelled 4 and 6 represent the physical states that define
the presence or absence of an unacceptable loss. The obstacle state describes whether or not
the obstacles are armed and whether or not an obstacle has been fired. Likewise, the denied
area state describes any agents within the denied area and their location. The vertex labelled
8 represents the outcome matrix, which describes the presence or absence of an unacceptable
loss. The edges labelled a, b, ¢, h, and i are the action edges, which describe the control actions
or dynamics through which the parent vertex influences the target vertex. The edges labelled d,
e, f, g, k, and | represent feedback from the parent vertex to the target vertex. Finally, the edges
m and n represent the conditional edges that are the inputs to the outcome matrix.

Controller

Meta

Actuator

2. Control
Station

Sensor

State

Outcome

3.
Obstacle

5. Visual
Sensors

7.
Characterization
Sensors

* Action

a. Feedback
Obstacle

State

6. Denied
Area
State

+ Conditional

\\\ @0000e

8.
QOutcome
Matrix

Figure 21: The Sim-graph for the Silverfish System.

As stated previously, at this point of development, the Sim-graph mainly serves as the foundation
for the Simulink behavior model. Future research on the mathematics of the Sim-graph formula-
tion could allow for further analysis on the system’s control structure.

The Simulink model follows the construction guidelines defined in Table 4. For the purposes of this
particular system, however, the operator and control station are represented as a single entity.
This is because the control station and the operator follow the same decision logic, thus mak-

Report No. SERC-2019-TR-002 Date February 22, 2019
47

ing separate model representations superfluous. A screenshot of the Simulink model is shown in
Figure 22.

silverfish_with_sensar
= % silverfish_with_sensor ¥ hd
@
k3
]
=
_..;}j
[P~
=
L o
P
"
.1:.
=1 ‘:'.:;:..m |
—r - | |
I | 1 .
e J—r | |
- e T
Ready ao% VarlableStepAute

Figure 22: A screenshot of the Simulink behavior model.

The Simulink model follows the scenario-based formulation described in Section 4.1. That is, the
state variables not controlled by the system, agent identity and proximity to an obstacle are de-
fined as source inputs to the simulation. For the purposes of this application, agent identity is
defined as a constant and proximity decreases linearly from an initial with time. These variables
are the inputs to a state machine diagram that defines the “true” state of the denied area based
on the values of the source variables. This “true” state of the denied area is defined as one of the
following states in the state machine diagram (combinations of these states are not considered as
the operation of Silverfish in such situations becomes dependent on the operator’s specific rules
of engagement):

1. No agent present in the denied area

2. A non-enemy agent in the denied area, but out of range of an obstacle
3. An enemy agent in the denied area, but out of range of an obstacle

4. A non-enemy agent in the denied area, and in of range of an obstacle
5. An enemy agent in the denied area, and in of range of an obstacle.

The state of the denied area is monitored by the surveillance and target characterization sen-
sors, which introduces noise into the estimate of the state of the denied area. This estimation is
represented by another state machine diagram with the same states defined above, however, the
inputs are combined with Simulink noise blocks. The estimate of the state of the denied area forms
the input to the operator’s decision model regarding which control actions to take. This decision

Report No. SERC-2019-TR-002 Date February 22, 2019
48

model is encoded in a truth table that maps the estimated denied area states to an appropriate
control action. This truth table is presented below in Table 10.

| Condition | D1 | D2 | D3
Agent Present in Denied Area | T T -
Confirmed Enemy Agent T T -
Agent in Range of Obstacle T F -
Control Action Fire | Arm | Disarm

Table 10: A truth table representation of operator decision logic.

The resulting control action of the truth table then forms the input to the state machine diagram
that represents the state of the obstacle. Each obstacle can be armed, disarmed, or fired. The state
of the obstacle is then combined with the “true” state of the denied area to form the inputs to the
outcome matrix. The outcome matrix is also defined as a truth table, mapping in Sim-graph states
to consequence analysis losses and hazards, seen below in Table 11.

Condition | D1 | D2 | D3 | D4 | D5 D6 | D7 | D8 | D9 |
Agent Presentin DeniedArea | T | T | T | T | T | T | F | F -
Confirmed Enemy Agent T T| T | T]|F F F F -
Agent in Range of Obstacle T T T F T | T F F -
Obstacle Armed T|T|F|F | T |T|T|T -
Obstacle Fired T F{F | F | T | F|T/|F -
Outcome nfa| Ll | H1|H1| L2 |H2]| L3 |H2]|n/a

Table 11: A truth table description of the outcome matrix.

Running the simulation in its baseline configuration always results in the “n/a” outcome defined in
Table 11, which indicates that the system is operating as intended given a particular set of starting
conditions.

Identifying Resiliency Solutions from Simulation Changes

As described in Section 4.1, changes to the simulation intended to create the hazardous condi-
tions and unacceptable losses from the consequence analysis identify the locations for potential
resilience solutions. For this particular system, the first approach to producing adverse outcomes-
introducing hazardous starting conditions for the simulation does not apply. Since the sources
variables describe the agent identity and proximity, the only possible hazardous starting condition
would be an enemy agent in range of an obstacle. As stated in the previous section, the system’s
decision logic would immediately resolve the situation.

The second approach to producing adverse outcomes in the simulation, however, yields mean-
ingful results. The causal scenarios identified in the consequence analysis and defined in Table V
describe potential ways that improper control actions can lead to adverse outcomes. These causal
scenarios can be categorized into three types of root causes:

Report No. SERC-2019-TR-002 Date February 22, 2019
49

1. Legitimate control actions made based on erroneous decisions
2. Legitimate control actions overridden by invalid control actions
3. Control actions blocked or delayed in implementation.

Using these three types of root causes as a basis for design, changes are made to the simulation
with the intent of producing the hazardous conditions defined by the consequence analysis.

For example, adding bias to the estimate of an enemy agent’s proximity to a particular obstacle
can result in the failure to fire the correct obstacle- H1. Depending on the geometry of the denied
area, as little as a 10% bias to the proximity estimate can result in the firing of an incorrect obstacle
(assuming that the obstacles have a 50 meter range and the range of adjacent obstacles overlap
by 5 meters). Following this example, each hazardous condition from the consequence analysis is
mapped to a list of changes in the simulation that produce the outcome and their corresponding
locations in the system in Table 12.

| Outcome | Changes to Simulation to Produce Outcome Location |
Negative bias or increased noise in identity esti- | Visual sensors, classifi-
mate cation algorithms (if ap-
plicable)
10% bias in proximity estimate (under right condi- | Characterization sen-
tions) sors, control station log
of obstacle locations
Confusion of control actions between operator in- | Control station, obsta-
put and obstacle implementation cle
H1 Incorrect reporting of obstacle state Control station, obsta-
cle
No control input to obstacles Control station, net-
work
Positive bias or increased noise in identity estimate | Visual sensors, classifi-
cation algorithms (if ap-
plicable)
H2 - - e -
Confusion of control actions between operator in- | Control station, obsta-
put and obstacle implementation cle
H3 No control input to obstacles Control station network
H4 Increased noise or bias added to identity and prox- | Sensors, classifica-
imity estimates tion algorithms (if
applicable)

Table 12: A mapping of simulation changes to the hazardous conditions they contribute to.

The combination of the type of change made to the simulation and the corresponding location
within the Silverfish system drive the selection of resiliency solutions that would mitigate the haz-
ardous condition mapped to the change. For example, a resiliency strategy that would address
the lack of control input to the obstacles associated with the network would be the inclusion of
a backup communication system to control the obstacles. Whereas a strategy that addresses the

Report No. SERC-2019-TR-002 Date February 22, 2019

50

same change to the simulation, but a different location within the system, would be the inclusion
of diverse hardware components within the control station that rotate responsibility for sending
commands to the obstacle over the network. Following this pattern, resiliency solutions are iden-
tified for each of the remaining simulation changes and corresponding locations in Table 13.

Change to Simulation \ Location

Resiliency Solution

Bias or increased noise in
identity estimate

Visual sensors

Redundant camera system
with lesser performance

Classification algorithms (if
applicable)

System parameter assurance

10% bias in proximity
estimate (under right
conditions)

Characterization sensors

Triple redundant acoustic sen-
sors for increased confidence
in proximity measurement

Control station based log of
obstacle locations

System parameter assurance

Confusion of control actions
between operator input and
obstacle implementation

Control station

Diversely redundant, hopping
command sending capability

Obstacle

Two-factor command autho-
rization

Incorrect reporting of

Control station

System parameter assurance

obstacle state Obstacle Operational consistency
checking for obstacle feed-
back

Control station Diversely redundant, hopping

command sending capability

No control input to obstacles

Network Backup communication net-

work

Table 13: Potential Resilience Solutions mapped to simulation changes.

The list of potential resiliency solutions is now consolidated into a mapping of each solution to the
locations for implementation, the hazardous condition(s) to be mitigated, and the associated Blue
Team adverse outcomes. This mapping is shown in Table 14.

5.2.4 EVALUATION OF IDENTIFIED RESILIENCY SOLUTIONS

Given the set of resiliency solutions identified in the previous step, each solution is now evaluated
in terms of the risk-based framework described in Section 4.1. The impact of each solution is a
factor based on the number of adverse outcomes addressed, the priority of those adverse out-
comes, and the solution’s effect on system operation. The priority of outcomes is defined as the
average likert priority ranking of the associated Blue Team adverse outcomes. As stated in Section
4.1, some resiliency solutions may be possible to represent in the simulation. For this particu-
lar application, the only solution solutions immediately representable within the simulation are
the ones addressing increased noise or bias within the system’s sensors. For example, the triple-
redundant acoustic sensors lowers the amount of noise perceived by the system, and allows for a

Report No. SERC-2019-TR-002 Date February 22, 2019

51

Resiliency Solution Location Mitigated Haz- | Associated Blue

ard(s) Team Outcomes
Redundant camera sys- | Visual sensors H1, H2, H4 1.2,2.1,2.2
tem with lesser perfor-
mance
System parameter as- | Control station, control | H1, H2, H3, H4 1.2,2.1,2.2
surance station based log of ob-

stacles, classification al-
gorithms

Triple redundant acous- | Characterization sen- | H1, H4 1.2,2.1,2.2
tic sensors for increased | sors
confidence in proximity
measurement
Diversely redundant, | Control station H1, H2, H3 1.1,1.2,1.4,3.2
hopping command
sending capability
Two-factor command | Obstacle H1, H2 1.1,1.4
authorization
Operational consis- | Obstacle H1 1.4,3.1
tency checking for
obstacle feedback
Backup communication | Network H1, H3 1.2,2.1,2.2,3.2
network

Table 14: Resilience solutions mapped to their locations for implementation and mitigated haz-
ardous conditions.

sensor giving bad measurements to be voted out. However, despite this solution’s apparent effect
on the accuracy of proximity measurements, the operation of Silverfish is not majorly affected by
an increase in precision from its acoustic sensors.

Silverfish relies heavily on the visual surveillance from the cameras monitoring the denied area.
Furthermore, the operator uses his or her own judgment for target identification and characterization—
which is initself an effective resiliency measure. The ability of the operator to maneuver within the
denied area to make “eyes-on” assessments of agents within the denied area reduces the impact

of increasing noise or bias to the sensors used for surveillance. However, it should be noted that,

in the feasible near-future scenario where target identification and classification is automated,
the impact of solutions that mitigate the introduction of noise or bias to the system’s sensors in-
creases significantly. Table 15 presents an overall impact rating for each resiliency solution based

on the three factors mentioned above along with a rationale for the rating of the solution’s effect

on the system.

Following the classification of each resiliency solution’s impact, the likelihood of each solution’s
outcomes to be mitigated is assessed. This likelihood measure is based on the number and severity
of the changes made to the behavior simulation to achieve adverse outcomes. Table 16 presents

Report No. SERC-2019-TR-002 Date February 22, 2019
52

network goes down,
huge impact on ability
to complete mission

Solution # of outcomes | Priority of out- | Solution Effect Overall Impact
addressed comes rating

Redundant cam- | 3 1.67 Effect diminished due | Medium

era system with to ability of operator

lesser perfor- to visually confirm

mance

System parame- | 4 1.67 Confidence in ac- | High

ter assurance curacy of state esti-
mations increased,
changes easily de-
tected

Triple redundant | 2 1.67 Minimal effect due to | Low

acoustic sensors ability of operator to

for increased visually confirm

confidence in

proximity mea-

surement

Diversely redun- | 3 2 Assurance that com- | High

dant, hopping mands are not altered

command send- within the control sta-

ing capability tion is enhanced

Two-factor 2 1 Assurance that obsta- | Medium

command autho- cles only perform le-

rization gitimate commands is
enhanced

Operational con- | 1 2 Assurance that obsta- | Low

sistency checking cle is reporting the

for obstacle feed- correct feedback en-

back hanced

Backup communi- | 2 2 Backup network | High

cation network allows mission to
continue if primary

each resiliency solution mapped to these two factors.

Table 15: Impact ratings for identified resiliency solutions.

Now that each solution’s impact and likelihood ratings have been recorded, each solution can be
classified into a “risk” prioritization category as described in Section 4.1. Table 17 presents each
resiliency solution’s impact and likelihood ratings along with its prioritization category.

Figure 23 presents this same information in the risk matrix figure from Section 4.1

Report No. SERC-2019-TR-002

53

Date February 22, 2019

Solution # of changes to | Severity of changes Overall Likeli-
achieve adverse hood Rating
outcome

Redundant camera system | 2 Low- difficult to achieve | Low

with lesser performance needed amount of noise or

bias to affect behavior

System parameter assurance | 3 High- simple changes drasti- | Medium

cally affect system behavior

Triple redundant acousticsen- | 2 Low- difficult to achieve | Low

sors for increased confidence needed amount of noise or

in proximity measurement bias to affect behavior

Diversely redundant, hopping | 3 Medium- simple changes to | Medium

command sending capability affect system behavior, but

difficult to achieve

Two-factor command autho- | 1 Medium- simple changes to | High

rization affect system behavior, but

difficult to achieve

Operational consistency | 1 Medium- simple changes to | High

checking for obstacle feed- affect system behavior, but

back difficult to achieve

Backup communication net- | 1 High- simple changes drasti- | High

work cally affect system behavior

Table 16: Likelihood ratings for identified resiliency solutions.

As seen in the above table and figure, the STRAT identified a total of seven resilience strategies
appropriate for the Silverfish system. Of these seven, four are recommended to receive high prior-
ity for consideration for implementation, one for medium priority, and the remaining two should
receive low priority. The low priority strategies, triple redundant acoustic sensors and a backup
camera system, received a low ranking due to the nature of the Silverfish system. Since Silverfish
uses a human-in-the-loop for identifying agents within the denied area and determining which
obstacle to fire (in the event that the agent is an enemy), the likelihood that noise or bias in the
sensor feedback causes incorrect behavior is minimal. In the event that the operator is unable to
identify a target using the sensors, he or she will likely resort to visual confirmation, which makes
the system resilient against friendly fire incidents at the slight risk of enemy agents traversing the
denied area before they can be positively identified and engaged.

The medium-priority solution, operational consistency checking for obstacle feedback, received its
ranking due to the ease with which adverse outcomes could be achieved by altering the system’s
perception of the obstacles states. More specifically, the concern behind this resiliency solution
involves the breakdown of mission function if the system believes that an obstacle has been fired
when it has not. Such a scenario could enable an adversary to traverse the denied area unimpeded
if there were a pathway created by obstacles thought to have been fired.

The high-priority solutions labelled D and E in Table 17 involve measures to ensure that the com-

Report No. SERC-2019-TR-002 Date February 22, 2019

54

Solution Impact Rating | Likelihood Prioritization
Rating Category

A. | Redundant camera system | Medium Low Low
with lesser performance

B. | System parameter assurance | High Medium High

C. | Triple redundant acousticsen- | Low Low Low
sors for increased confidence
in proximity measurement

D. | Diversely redundant, hopping | High Medium High
command sending capability

E. | Two-factor command autho- | Medium High High
rization

F. | Operational consistency | Low High Medium
checking for obstacle feed-
back

G. | Backup communication net- | High High High
work

Table 17: Resilience solutions classified in their prioritization categories.

Impact Priority
Low Medium High

'§ High F
— i Medium
< Medium
X
=
Low

Figure 23: Resilience solutions mapped to their position in the risk matrix.

mands sent by a system component match the commands received by the intended recipient. It is
clear how such mis-matches would result in unintended behavior. The solution labelled B in Table
17 involves ensuring that changes to the algorithms, decision models, or other parameters are
detected and accounted for before any system processes are adversely affected.

Finally, the highest priority solution for consideration for implementation is the introduction of a
backup communication network. Without a working network, the Silverfish system cannot com-
plete its mission.

5.2.5 COMPARISON TO CSRM RESULTS

Comparing the results of the CSRM to the STRAT must first be qualified by the difference in goals
between the two methodologies. First and foremost, the CSRM intends to develop cyber security

Report No. SERC-2019-TR-002 Date February 22, 2019
55

requirements for a developing system. Such requirements include the incorporation of both re-
silience and traditional security solutions into the system design. STRAT, on the other hand focuses
solely on the identification and evaluation of resiliency strategies. Consequently, the comparison
of results between the two methodologies will be limited to the CSRM’s recommendations for
resiliency. Secondly, the CSRM leverages domain experts throughout the process, which provides
excellent credibility in its results, but limits its applicability in practice due to scheduling and bud-
get constraints. STRAT utilizes domain experts to a lesser degree in the hope that model-based
evidence can provide a similar level of credibility.

The potential resilience strategies identified by the CSRM included resilient weapon control ca-
pabilities, diverse communications sub-systems, and resilient situational awareness capabilities.
Based on the inputs from the Blue and Red Teams, the CSRM identified the system’s communi-
cation subsystems (network) as the top priority area for resiliency. The resilient weapon control
and situational awareness capabilities incorporated a variety of solutions such as diverse redun-
dancy, confidence testing, and situational awareness introspection. The STRAT also identified the
network as the top priority for resiliency, and specified that resiliency should be achieved through
redundancy. The other resiliency strategies however, can be classified as sub-strategies of the
weapon control and situational awareness categories identified in the CSRM.

In general, CSRM identified a broader selection of resiliency strategies than the STRAT. This could
be a result of the abstraction of system hardware components in STRAT’s definition of the control
structure and system model. CSRM defined the existence hardware components explicitly in SysML
representations, which likely aided the identification of resiliency strategies such as separating
situational awareness information from weapon control functions.

The similarity of the top priority recommendations in the CSRM and STRAT suggests that STRAT is
compatible with existing methodologies. Since STRAT does not involve as many domain experts as
the CSRM, the STRAT could be a viable alternative technique for recommending a prioritized set
of resiliency strategies. Both methodologies, however, are limited in that neither account for the
cost of resiliency.

5.3 APPLICATION OF CYBOK & SECURITY ANALYST DASHBOARD

We use the SysML models presented above with some extra design information added through
the dashboard. This extra design information assists CYBOK to find applicable attack vectors. We
note that a systems engineering analysis is already conducted and, therefore, it is not necessary
to transfer the results to the dashboard. For these results we take the previous section as input to
the attack vector analysis.

CYBOK and especially its Ul consist of a useful tool to investigate and explore the attack vector
space associated with a given system topology. This is because of their interactive nature between
vulnerability data and the model, which is not present in the SysML framwork.

The evidence produced by the tools present in this report are also supported by previous efforts
in the same realm [3]. Specifically, in the previous exercise stakeholders, blue team members, and
red team members evaluated silverfish for critical subsystems and potential resilience or defensive
solutions that might be applied before the system is deployed. The attack vector analysis supports

Report No. SERC-2019-TR-002 Date February 22, 2019
56

Anti-personnel obstacle
Anti-tank obstacle

Infrared IR Camera

Metwork Radio Relay
Wi-Fi mesh wirq!ess network

Wireless Mesh Network Wi-Fi

Operator Control Station

C2 Interface

‘spoaf
UAV Interface

Wi-fi

intercept

Figure 24: The attack surface of silverfish.

those findings by producing real attack information that could further provide assurance that the
system is secure up to its operational needs.

Moreover, while this tool does not eradicate the need for consulting security professionals, it does
allow for system designers to be better informed about potential attack vectors that should be dis-
cussed during those consultations. At the same, it provides an equal framework for both security
analysts and systems engineers to discuss within the same language or framework and, therefore,
it bridges the grap between the two.

5.3.1 ATTACK SURFACE

The first thing we look at is the automatically produced attack surface. This attack surface is con-
structed by looking at the Entry Point attribute in the model. If an attack vector is associated with
the keywords in this specific attribute then the element; that is, vertex, becomes part of the at-
tack surface. That means, that this element is very likely accessible externally by an attacker and
if violated can be the reason for further spread—through other attack vectors—within the system
topology.

Specific to silverfish we identified the following elements are part of the attack surface: UAV In-
terface, Operator Control Station, C2 Interface, Network Radio Relay. The violated attributes as-
sociated with these components are shown in red and are: Wi-Fi, Wi-Fi mesh wireless network,
Intercept and Spoof (Figure 24). It is apparent, that all those elements are the communication

Report No. SERC-2019-TR-002 Date February 22, 2019
57

Table 18: A fragment of the results produced by CYBOK and picked by the security analyst through
the Security Analyst Dashboard.

Network Radio Relay
CAPEC-158 Sniffing Network Traffic
CWE-311 Missing Encryption of Sensistive Data
CWE-319 Cleartext Transmission of Sensitive Information

Operator Control Station
CAPEC-10 Buffer Overflow via Environment Variables
CWE-120 Buffer Copy without Checking Size of input ('Classic Buffer Overflow’)
CWE-231 Improper Handling of Extra Values
CWE-993 SFP Secondary Cluster: Incorrect Input Handling

UAV Interface
CAPEC-604 Wi-FiJamming
CAPEC-202 Create Malicious Client
CWE-602 Client-Side Enforcement of Server-Side Security
CWE-254 7PK - Security Features

C2 Interface
CWE-311 Missing Encryption of Sensistive Data
CWE-319 Cleartext Transmission of Sensitive Information

Infrared IR Camera
CAPEC-13 Subverting Environment Variable Values
CWE-15 External Control of System or Configuration Setting
CWE-994 SFP Secondary Cluster: Tainted input to variable

devices between subsystems.

5.3.2 RELEVANT ATTACK VECTORS

To further understand how exploits can cause system function violations it is necessary to examine
the attack vector space of the system topology; that is, the attacks produced by CYBOK to be
relevant to it. To do so a security analyst has to filter through the attacks and examine which ones
are: (1) truly applicable to the system, (2) have a high likelihood of being used against the system,
and (3) be successful in violating subsystem functions.

The subset of attack vectors filtered by a security analyst using the Security Analyst Dashboard
is significantly lower than the starting set (i.e., CAPEC, CWE, CVE) but also from the CYBOK set.
CYBOK acts as the first filter, finding only relevant attack vectors from the databases based on the
system model. Then, a further circumspection from a security analyst is necessary to find the truly
applicable but also important attacks. The process is semiautomatic in that way.

The security analyst picks those results by using extra attributes of each component and using
the automatically produced attack surface as an initial point of analysis. The individual attacks
are found by using the tree view pane’s filter function by component name or other informa-
tion present in the datasets or the model. For example, the C2 Interface included the attribute

Report No. SERC-2019-TR-002 Date February 22, 2019
58

File View Cybok Filter

Security Analyst Dashboard

I[Attack Surface | Perform Analysis | [Add to Bucket |

|

Anti-tank obstacle

AN

Anti-personnel obstacle

Infrared IR Camera

4 Network Radio Relay

|
Wi-Fi mesh wirgless network. cwelzo
. 13
) Encryption of Sensitive Data /
/ cvE231
. /L Wireléss Mesh Network Wi-Fi /‘
e /
cwebos
/ cwE.254 e
[Operator Control S@ation] /
\/ R CcwEboe
e |
/1 s cwa'ssa
b C2 Interf; \
nterface
. » spoof a@ cnre1s

UAV Interface
]

Attack Vector Space |Attack Vector Tree

‘ ‘Bucket

-| [Fitercraph || clear |

carec 1o
®

CWE31EAPEC-158
cueas
L

CAPEC-603
°

intercept

Selected: 1 [Layout Frozen] Data size: 15 selected: 15

J [~| [[Filter Entries

cB Attack
CAPEC-158

Violated Ci
Network Radio Relay, Operator Control Station, Wireless Mesh Network Wi-Fi, Wi-Fi mesh wireles...

Description

‘Sniffing Network Traffic IC

CAPEC-13 Subverting Environment Variable Values [Operator Control Station, UAV Interface, Anti-tank obstacle, Anti-personnel obstacle, Infrared IR ..

CAPEC-10 Buffer Overflow via Environment Vaniables [Operator Control Station, UAV Interface]

Wi-Fi Jamming [Network Radio Relay, Operator Control Station, UAV Interface, Wireless Mesh Network Wi-Fi, Wi-F...

Figure 25: The projected attacks over the system topology, the set of attack vectors picked by the
security analyst in graph form, and the bucket containing the same attack vectors in textual form.

communication_node: cleartext which suggests that the security analyst should look for at-
tacks related to cleartext or encryption. UAV Interface is part of the attack surface because it used
Wi-Fi and attacks on Wi-Fi are possible. Finding those attacks is important to inform about what
defenses or mitigations. Infrared IR Camera is a device that the security analyst knows that it uses
external environment input data, so | searched for attacks related to that. The resulting set of at-
tack vectors is only the crucial set that the security analyst reports to the rest of the stakeholders
(Table 18). Another view of this smaller set can be to project it over the system topology, which
further informs at the critical subsystems of the whole system (Figure 25).

Because all attack surface elements are part of the communications network the attack vector
analysis agrees with the CSRM and STRAT analyses presented in previous sections. Additional to
those results, however, the attack vector analysis reveals the potential for further spread within
the system in the event that those attack surfaces are accessed by an attacker; that is, in the event
that the resilience solutions are insufficient. In that case, further barriers might be necessary—
based on the stakeholders’s needs—within the system structure itself. The specific attack vectors
reported by CYBOK and the Security Analyst Dashboard can guide such defense strategies.

Report No. SERC-2019-TR-002 Date February 22, 2019

59

6 CONCLUSIONS AND POTENTIAL FUTURE RESEARCH DIRECTIONS

Outcomes this year include developing a deeper understanding of open source databases of his-
torical cyber attacks (e.g., CAPEC, CWE, CERT, and CVE), as well as defining and developing SysML
modeling constructs and a traceability ontology to effectively capture relations between missions
and system, components in the presence of attack patterns. Key accomplishments for this phase
include: (1) development of the STRAT toolset to support CSRM and dynamic assessment of attack
consequence, (2) use of several different NLP/querying techniques to characterize relationships
between attack classes in CAPEC, CWE, and CVE; (3) development of the Security Analyst Dash-
board. The dashboard presents an interactive view of both the “System” and the “Attack Space”
and allows for several different levels of automation as well as human/analyst interaction. Each
of the tools is published as a binary and/or executable. The Dashboard is designed to work within
CYBOK (though CYBOK may be used independently of the dashboard); for example, the dashboard
uses the automated recommender system that underpins CYBOK to provide analysts with the ca-
pability to directly query specific entries in CAPEC, CVE, and CWE.

For future research efforts, consideration should be placed on how to accelerate the transition of
research results into practice. The recommended path for such a transition would be to engage in a
case study that features collaboration with one or more tool vendors as a basis for addressing the
technical issues related to the integration of the newly derived tools with existing SysML-based
MBSE tool sets. This case study approach to accelerating transition into practice would require
selection of a toolset for initial evaluations.

Currently CYBOK is engineered to employ MITRE Corporation’s CAPEC and associated databases.
Future efforts might focus on the identification of additional data requirements that would en-
hance support for evolving cyber resilience risk assessments. The motivation for such an effort is
the expectation that future cyber attacks will increase the need to address cyber-physical system
features and system-of-system integration features, thereby requiring different sets of informa-
tion and associated schema than are employed in the current MITRE data sets. Additionally, there
is a need for arisk scoring system that combines the likelihoods from CYBOK with systems behavior
derived from the dynamic, finite-state analyses from STRAT, with the promise that higher fidelity
assessments of cyber attack consequences (based on system behavior rather than structure), and
consequently improved risk analyses, could be produced.

REFERENCES

[1] C. H. Fleming. Systems theory and a drive towards model-based safety analysis. In 2017
Annual IEEE International Systems Conference (SysCon). IEEE, 2017.

[2] P. M. Beach, R. F. Mills, B. C. Burfeind, B. T. Langhals, and L. O. Mailloux. A stamp-based ap-
proach to developing quantifiable measures of resilience. In Proceedings of the International
Conference on Embedded Systems, Cyber-physical Systems, and Applications (ESCS), 2018.

Report No. SERC-2019-TR-002 Date February 22, 2019
60

3]

[4]

[5]

6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Barry Horowitz, Peter Beling, Cody Fleming, Stephen Adams, Bryan Carter, Tim Sherburne,
Carl Elks, Georgios Bakirtzis, Forrest Shull, and Nancy R Mead. Cyber security requirements
methodology. Technical report, Stevens Institute of Technology Hoboken United States, 2018.

D. M. Blei, A. Y. Ng, and M. |. Jordan. Latent Dirichlet allocation. Journal of machine Learning
research, 2003.

S. Barnum. Common attack pattern enumeration and classification (CAPEC) schema descrip-
tion. Cigital Inc, http://capec. mitre. org/documents/documentation/CAPEC_Schema_Descr
iption_v1, 3, 2008.

S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathematical
statistics, 1951.

S. Adams, B. Carter, C. Fleming, and P. A. Beling. Selecting system specific cybersecurity attack
patterns using topic modeling. In 2018 17th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). |IEEE, 2018.

X. Yuan, E. B. Nuakoh, J. S. Beal, and H. Yu. Retrieving relevant CAPEC attack patterns for se-
cure software development. In Proceedings of the 9th Annual Cyber and Information Security
Research Conference. ACM, 2014.

I. Kotenko and E. Doynikova. The CAPEC based generator of attack scenarios for network
security evaluation. In Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications (IDAACS), 2015 IEEE 8th International Conference on. IEEE, 2015.

X. Wei and W. B. Croft. LDA-based document models for ad-hoc retrieval. In Proceedings of
the 29th annual international ACM SIGIR conference on Research and development in infor-
mation retrieval. ACM, 2006.

H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic modeling. In
Proceedings of the 32nd ACM/IEEE international conference on Software Engineering. ACM,
2010.

B. Lu, M. Ott, C. Cardie, and B. K. Tsou. Multi-aspect sentiment analysis with topic models.
In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops
(ICDMW). IEEE, 2011.

L. Na, X. Peng, L. Ying, T. Xiao-Jun, W. Hai-Wen, and L. Ming-Xia. A topic approach to sen-
tence ordering for multi-document summarization. In Proceedins of the 2016 IEEE Trust-
com/BigDataSE/I SPA. |EEE, 2016.

K. Aswani, A. Cronin, X. Liu, and H. Zhao. Topic modeling of SSH logs using latent Dirich-
let allocation for the application in cyber security. In Proceedings of the 2015 Systems and
Information Engineering Design Symposium, SIEDS. |EEE, 2015.

F. Kolini and L. Janczewski. Clustering and topic modelling: A new approach for analysis of
national cyber security strategies. In Proceedings of PACIS 2017, 2017.

Report No. SERC-2019-TR-002 Date February 22, 2019

61

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

S. Neuhaus and T. Zimmermann. Security trend analysis with CVE topic models. In Proceed-
ings of the 2010 IEEE 21st international symposium on Software reliability engineering, ISSRE.
IEEE, 2010.

Barry Horowitz, Peter Beling, Cody Fleming, Stephen Adams, Bryan Carter, Krishnamurthy
Vemuru, Carl Elks, Tim Bakker, Kryzsztof Cios, Georgios Bakirtzis, et al. Security engineering
fy17 systems aware cybersecurity. Technical report, Stevens Institute of Technology Hoboken
United States, 2017.

T. L. Griffiths, M. |. Jordan, J. B. Tenenbaum, and D. M. Blei. Hierarchical topic models and the
nested chinese restaurant process. In Advances in neural information processing systems,
2004.

D. M. Blei and J. D. Lafferty. Correlated topic models. In Proceedings of the 18th International
Conference on Neural Information Processing Systems. MIT Press, 2005.

J. D. Mcauliffe and D. M. Blei. Supervised topic models. In Advances in neural information
processing systems, 2008.

M. B. Christopher. Pattern Recognition and Machine Learning. Springer, 2006.

C.-J. Kim and C. R. Nelson. State-space models with regime switching: classical and Gibbs-
sampling approaches with applications. The MIT press, 1999.

S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the systems modeling
language. Morgan Kaufmann, 2014.

Martin F Porter. An algorithm for suffix stripping. Program, 1980.

J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang. A density-based method for adaptive LDA model
selection. Neurocomputing, 2009.

R. Arun, V. Suresh, C. E. V. Madhavan, and M. N. N. Murthy. On finding the natural number of
topics with latent Dirichlet allocation: Some observations. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 2010.

R. Deveaud, E. SanJuan, and P. Bellot. Accurate and effective latent concept modeling for ad
hoc information retrieval. Document numérique, 2014.

X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou. Exploiting Wikipedia as external knowledge
for document clustering. In Proceedings of the 15th International Conference on Knowledge
discovery and data mining, SIGKDD. ACM, 2009.

0. Jin, N. N. Liu, K. Zhao, Y. Yu, and Q. Yang. Transferring topical knowledge from auxiliary
long texts for short text clustering. In Proceedings of the 20th ACM international conference
on Information and knowledge management. ACM, 2011.

D. Andrzejewski, X. Zhu, M. Craven, and B. Recht. A framework for incorporating general
domain knowledge into latent Dirichlet allocation using first-order logic. In Proceedings of
the International Joint Conference on Artificial Intelligence, 1JCAI, 2011.

Report No. SERC-2019-TR-002 Date February 22, 2019

62

[31] Z.Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. Leveraging multi-domain
prior knowledge in topic models. In Proceedings of the 2013 International Joint Conferences
on Artificial Intelligence, 1JCAI, 2013.

[32] W. Young and N. Leveson. Systems thinking for safety and security. In Proceedings of the
29th Annual Computer Security Applications Conference. ACM, 2013.

[33] G.Bakirtzis, B. T. Carter, C. H. Fleming, and C. R. Elks. Mission aware: Evidence-based, mission-
centric cybersecurity analysis. arXiv preprint arXiv:1712.01448, 2017.

[34] H. Derksen and J. Weyman. Quiver representations. Notices of the AMS, 2005.

[35] R. A.Jones and B. Horowitz. A system-aware cyber security architecture. Systems Engineer-
ing, 2012.

[36] P. R. Garvey and Z. F. Lansdowne. Risk matrix: an approach for identifying, assessing, and
ranking program risks. Air Force Journal of Logistics, 1998.

[37] G. Bakirtzis, B. T. Carter, C. R. Elks, and C. H. Fleming. A model-based approach to security
analysis for cyber-physical systems. In Proceedings of the 2018 Annual IEEE International
Systems Conference, SysCon 2018, 2018.

[38] B.T. Carter, G. Bakirtzis, C. R. Elks, and C. H. Fleming. A systems approach for eliciting mission-
centric security requirements. In Proceedings of the 2018 Annual IEEE International Systems
Conference, SysCon 2018, 2018.

[39] G. Bakirtzis, B. J. Simon, C. H. Fleming, and C. R. Elks. Looking for a black cat in a dark
room: Security visualization for cyber-physical system design and analysis. arXiv preprint
arXiv:1808.08081, 2018.

Report No. SERC-2019-TR-002 Date February 22, 2019
63

